Ну или не совсем простая, но способов решений будет много. Ну и рисунок-подсказка должен натолкнуть на «продолжение»… Ну или запутать. Задача в продолжение темы «метрическое соотношение сторон в треугольнике», поэтому стоит этот раз решить как раз схожим (с предыдущими задачами) способом. Но как сказано выше — способов тут не мало я перечислю несколько в подсказках, а Вы попробуйте найти свой. Условие Две стороны треугольника равны 2√2 и 3, площадь треугольника равна 3. Найдите третью сторону. Подсказки Начнём с оптимального (по теме прошлых задач) варианта решения — теорема косинусов. Да да. Но вот известного угла только между сторонами нет. Что делать? Вспоминать про площадь! Через площадь и две стороны можно узнать синус угла, а там и косинус через основное тригонометрическое тождество (если синус совсем неприглядный или узнать угол по табличному значению). Тут главное не ошибиться и не проморгать угол (острый или тупой). Второй вариант, прям напрашивается из условия — теорема Гер
Простая задача на нахождение стороны через площадь треугольника
9 августа 20219 авг 2021
1576
1 мин