Найти в Дзене
NNZ-IPC

Электролюминесцентный дисплей: особенности, конструкция, применение

Оглавление

Особенности конструкции стандартного тонкопленочного ЭЛД

Архитектура стандартного непрозрачного ЭЛД (TFEL) основана на размещении изолирующих слоев, а также слоя светоизлучающего люминофора между прозрачными и металлическими электродами, как показано на рис. 1. Стандартный тонкопленочный ЭЛД сконструирован на стеклянной подложке толщиной 1,1 мм. Подложка выполнена из soda lime glass — натрий-кальциевого стекла эталонного состава с температурой стеклования около +560 °C. Композиция герметизирована покровным стеклом такого же состава и также имеет толщину 1,1 мм.

Специальной технологией, реализуемой компанией Beneq при создании ЭЛД, является атомно-слоевое осаждение (молекулярное наслаивание). Данная технология обеспечивает химически однородные, конформные и равномерные по толщине барьерные и токопроводящие слои. Свет генерируется посредством ударного возбуждения атомов марганца Мn в люминофоре (сульфид цинка) ZnS электронами, перемещаемыми при помощи приложенного напряжения переменного тока. Возбуждающее напряжение может быть синусоидальным или прямоугольной формы. Оно прикладывается методом мультиплексирования электродов столбцов на одной стороне с электродами строк на другой стороне люминофора (рис. 2).

Рис.3. Спектр люминофора ЭЛД на основе сульфида цинка, легированного ионами марганца (ZnS: Mn)
Рис.3. Спектр люминофора ЭЛД на основе сульфида цинка, легированного ионами марганца (ZnS: Mn)

Каждый раз, когда прикладываемое к столбцам и строкам напряжение превышает порог номинального значения около 170 В, генерируется короткий импульс света в постоянной времени затухания менее 1 мс. Значение яркости излучаемого света приблизительно пропорционально частоте возбуждения. В стандартных применениях матричных дисплеев частота возбуждающего напряжения может достигать 60–240 Гц. В семисегментных типах дисплеев (прямое управление без мультиплексирования) используются даже более высокие частоты. Высоковольтные импульсы генерируются управляющей электроникой дисплея. Напряжение питания дисплея 5 и 12 В DC (опционально 5 и 24 В, а также 5 В и «широкий вход» 8–18 или 11–30 В). В стандартном ЭЛД в качестве слоя люминофора применяется сульфид цинка ZnS, легированный ионами марганца Mn, и результирующий спектр излучения света является желтым, с максимумом, соответствующим длине волны 580 нм (рис. 3).

Рис. 4. Прозрачный дисплей TASEL сегментного типа с люминофором зеленого цвета
Рис. 4. Прозрачный дисплей TASEL сегментного типа с люминофором зеленого цвета

Легирование люминофора другими химическими элементами позволяет создавать другие цвета (например, легирование ионами тербия позволяет создать зеленый цвет, рис. 4).

Именно благодаря твердотельной структуре и преимуществам технологии атомнослоевого осаждения ЭЛД обладают высокими техническими характеристиками, упомянутыми выше.

Более подробно о технологии атомно- слоевого осаждения, модельном ряде ЭЛД, технологии ICEBrite (технологии повышения контрастности ЭЛД), показателях надежности, контроллерах, интерфейсах для ЭЛД можно прочитать в [1, 2].

Особенности конструкции прозрачного ЭЛД

Прозрачные электролюминесцентные дисплеи конструируют на основе стандартного ЭЛД путем замены заднего металлического электрода прозрачным электродом (на основе оксида индия-олова, ITO) и удаления остальных непрозрачных слоев из структуры дисплея. Схема поперечного сечения структуры показана на рис. 5.

Рис. 5. Схема поперечного сечения прозрачного ЭЛД
Рис. 5. Схема поперечного сечения прозрачного ЭЛД

Для максимального увеличения светопропускания была решена задача согласования коэффициента преломления смежных слоев. Другим важным параметром в оптимизации слоев прозрачного ЭЛД было уменьшение «эффекта ореола», обусловленного внутренними отражениями, причиной которых является отсутствие согласования коэффициента преломления слоев. В оптических системах этот эффект также называют оптическим волноводом. Отраженный свет перемещается между слоями и, в конце концов, покидает излучающий пиксел благодаря эффекту рассеивания. Этот эффект наблюдается, главным образом, в прозрачном ЭЛД, и им можно управлять. Критерием оценки данного эффекта является значение расстояния от пикселя, на котором не видна утечка света при наблюдении через микроскоп. Как показали результаты оценки трех рецептур люминофора (результаты сведены в таблицу), зона эффекта ореола уменьшена путями оптимизации толщины слоев и перехода на люминофор без рассеивания.

Другим способом уменьшения ореола стало покрытие внешних поверхностей анти- отражающими материалами. Важной проблемой была необходимость изготовления гладкого слоя люминофора с целью минимизации рассеивания света. На начальной стадии разработки использовался стандартный состав люминофора, и коэффициент пропускания был всего лишь 75%. Разработка и реализация более гладких пленок способствовали улучшению светопропускания до 84% (у стандартного натрий-кальциевого стекла этот показатель равен примерно 90%).

Таблица. Оптические параметры прозрачного ЭЛД с тремя рецептурами люминофора (на частоте 247 Гц)
Таблица. Оптические параметры прозрачного ЭЛД с тремя рецептурами люминофора (на частоте 247 Гц)

Следует отметить, что результат в 84% был достигнут для образцов, в выпускаемых прозрачных дисплеях этот показатель несколько ниже и равен 80%.

Более высокая проводимость также была ключевым параметром для обеспечения надежности панели при испытаниях в жестких условиях окружающей среды, включая длительную эксплуатацию при высоких температурах. Управляющая электроника прозрачного дисплея аналогична стандартным ЭЛД. Подключение к площадкам электродов контура может быть выполнено, например, при помощи автоматизированной сборки на ленточном носителе (TAB) для драйверов столбцов и термосварки к печатной плате для соединения с управляющими драйвера- ми строк, размещенными в корпусах для поверхностного монтажа.

Beneq Lumineq производит прозрачные ЭЛД TASEL в вариантах матричного и сегментного типов. Для дисплеев матричного типа яркость составляет 80–100 кд/м2. Для сегментных дисплеев этот показатель гораздо выше, достигнуто значение 1500 кд/м2 (модель ELT15S-1500, рис. 6), технологически для них достижим уровень 3000 кд/м2. Технология позволяет создавать дисплеи раз- личной изогнутой формы.

Рис. 6. Прозрачный дисплей TASEL сегментного типа с яркостью 1500 кд/м2
Рис. 6. Прозрачный дисплей TASEL сегментного типа с яркостью 1500 кд/м2
Рис. 7. Протокол испытаний дисплейного стекла № 1410
Рис. 7. Протокол испытаний дисплейного стекла № 1410
Рис. 8. Протокол испытаний дисплейного стекла № 1610 (применен химический способ упрочнения)
Рис. 8. Протокол испытаний дисплейного стекла № 1610 (применен химический способ упрочнения)

#железо_и_технологии