Найти тему
⚠️ Инженерные знания

Как работает электродвигатель [на понятном языке]

Вокруг нас становится всё больше электродвигателей. Вместе с безнадежным устареванием бензиновых агрегатов в мире транспорта, появляются и принципиально новые сферы использования электродвигателей. Многие высокотехнологичные электронные устройства используют такие двигатели для самых различных целей, например чтобы реализовать работу вибровызова у смартфона.

Полезно и интересно разобраться в логике функционирования этого нехитрого, но крайне востребованного сегодня устройства. Давайте опустим все сложные высказывания и формулировки, а попробуем на простом языке сформулировать основы функционирования электрических агрегатов.

Ротор электродвигателя
Ротор электродвигателя

Начнем с самого простого. Наверняка каждый из читателей игрался с магнитиками и обращал внимание, что в одну сторону магниты притягиваются, а в другую сторону магниты отталкиваются. Говоря научным языком - полюса магнита, имеющие одинаковые знаки, отталкиваются, а полюса магнита с разными знаками притягиваются.

Поведение магнитов
Поведение магнитов

Причину этого явления объясняют спецификой поведения зарядов. Но полностью объяснить природу взаимодействия пока не получилось. Да нам и не нужно сейчас это делать. Для нас важен сам факт подобного явления. Обратите внимание, что отталкиваются магниты гораздо раньше, чем будут подведены друг к другу вплотную. Всё дело в линиях магнитной индукции.

Линии магнитной индукции
Линии магнитной индукции

Теперь представим, что мы разместили магнитики таким образом, когда возможно использовать эту силу отталкивания нам во благо. Один магнитик поместили на ось, а второй поставили где то рядом. Вектора действующих сил распихали таким образом, что они по касательной толкают ось и заставляют её крутиться. Получилось, что система будет вращаться при правильном подборе точек расположения магнитов. Эффект напоминает раскручивание карусели, на котором катаются дети. Когда карусель с ребенком проходим мимо папы, он подкручивает систему и поддерживает вращение. Замени мы папу одним магнитом, а ребенка другим того же полюса - выйдет модель электродвигателя.

Может сложиться неправильное представление, что мы получили вечный двигатель. На самом деле это не так. Мы не сможем без прочих ухищрений заставить эту систему работать постоянно из-за потери энергии на сторонние факторы.

Теперь представим, что нам нужно управлять такой моделью. Ведь когда магниты постоянные, мы не сможем регулировать процесс вращения. Да и оптимизировать его не получится. Поэтому, мы прибегнем к помощи электромагнита. Электромагнит может создавать поле тогда, когда нам это нужно. Нажали на кнопочку - ток проходит через цепь и формируется магнитное поле.

Логика работы электромагнита
Логика работы электромагнита

Но в более простом случае рационально использовать рамку с током. Там начинает работать закон Ампера, а род взаимодействия будет таким же. Вспомним, что закон Ампера описывает влияние магнитного поля на проводник с током. Он описывает силу, которая будет действовать на проводник с током со стороны магнитного поля.

Закон Ампера
Закон Ампера

Теперь представим, что мы взяли рамку с током и поместили её в магнитное поле. Рамка с током представляет собой проводник, который оказался в магнитном поле. Пропускаем через рамку ток и поле начинает воздействовать с некоторой силой на этот проводник. Если рамка замкнутая, то ток меняет в ней свой направление.

Смена направления тока
Смена направления тока

Получается, что на рамке формируется вращающий момент. Ведь когда направление тока в проводнике меняется, меняется и направление вектора силы, воздействующей со стороны магнитного поля.

Если разместить рамку правильно, то появится именно крутящий момент. Если нет - поле будет гнуть рамку. Наша задача "снять" крутящий момент. Для этого рамку нужно правильно расположить или увеличить количество рамок. Тогда одна из них обязательно попадет в нужное положение.

Кстати, это магнитное поле формируется неподвижными постоянными магнитами статора двигателя.

Простейший электродвигатель
Простейший электродвигатель

Вращающаяся часть будет называться ротором или якорем. Неподвижная на корпусе - статором. Приведенная модель является рабочей моделью двигателя постоянного тока. В реальной схеме всё организовано точно также, только якорь имеет множество таких рамок внутри своей конструкции. Полезно прочитать эту статью.

Рамки внутри ротора
Рамки внутри ротора

Но есть одно несчастье. Подключи мы такую модель к источнику переменного напряжения, и получим не равномерное движение, а постоянные рывки. Всё дело в том, что переменный ток постоянно меняет своё направление.

Направление сил, воздействующих на ротор, тоже будет меняться.

В случае с электродвигателями переменного тока конструкция строится немного иначе.

Обмотка располагается не на роторе, а на статоре. Пропуская через обмотку статора электрический ток, мы получим пульсирующее магнитное поле. Ток, как и в примере выше, меняет своё направление. Ведь намотка выполнена тоже как рамка. И потому актуальна картинка про смену направления электрического тока. Магнитное поле тоже будет направлено в разные стороны.

Схема обмотки статора и направление тока
Схема обмотки статора и направление тока

Если в такое поле поместить магнитик или ротор особой конфигурации (колесо для грызуна, в котором индуцируется ток сам) опять получим описываемый ранее эффект и крутящий момент. Только обмоток нужно много, чтобы "толкались" они одна за другой. Тогда оно будет пульсировать и подпихивать наш якорь. Получили опять вращающий момент. Вуаля!