Находить площадь фигуры можно не только по формулам, но чаще всего мы используем именно их. Первые формулы площади нам дают в 3 - 4 классах и это четырёхугольники - прямоугольник и квадрат. К сожалению, некоторые и эти формулы к экзамену не знают. Ну а мы рассмотрим задачу для решения которой будем использовать ещё более сложную формулу. Формулу площади произвольного (т.е. любого) четырёхугольника. Начнём?
Условие
Рассуждение
- В условии ни слова не сказано про диагонали;
- Точки M, F и K - середины сторон AB, AD и DC, а значит если их соединить, тополучатся отрезки соединяющие середины сторон (масло масляное);
- Отрезки FM и KF - известны, угол между ними ∠MFK - тоже, и это похоже на теорему косинусов, но MK - кажется бесполезным в решении отрезком.
Решение
Нарисуем произвольный четырёхугольник, то есть так, чтоб он не был похож ни на параллелограммы, ни на трапеции. И отметим середины сторон, известные отрезки и угол:
Отрезки MF и FK - соединяют середины сторон, что очень напоминает средние линии. Рассмотреть их помогут диагонали.
Теперь видно, что MF - средняя линия в ∆ABD, а FK - в ∆ACD.
Рассмотрим ∆ABD:
По свойству средне линии треугольника (равна половине параллельной ей стороны), можно найти диагональ BD, будет в 2 раза больше MF:
BD = 12√3 см.
Аналогично найдём диагональ AC через ∆ACD:
AC = 20 см.
Теперь нам известны обе диагонали найдём угол между ними. Для этого рассмотрим четырёхугольник NEHF:
Опять по свойству средней линий треугольника (только теперь параллельность стороне), определим тип четырёхугольника:
NEHF - параллелограмм ( противолежащие стороны параллельны).
Осталось найти площадь по формуле:
Подставим в формулу найденные диагонали и синус 120° (равен синусу 60°) и получим ответ.
Ответ: 180
Заключение
В этом решении мы применяли:
- Свойства средней линии треугольника.
- Формула площади произвольного четырёхугольника через диагонали и угол между ними.
Применение
Понять, что Вам нужна именно эта формула площади обычно проще, чем в рассмотренной задаче. Вам будут давать длины диагоналей или угол между ними, а найти нужно будет площадь. Могут наоборот дать площадь и попросить узнать диагональ или угол между ними. Формула встречается в первой части ОГЭ: ссылка на задания из открытого банка заданий ОГЭ.
Попробуйте решить и похожую на ту, что мы разобрали:
Пробуйте, решайте, изучайте, делитесь решениями в комментариях. Удачи!