Приветствую Вас, уважаемые Читатели! Продолжаю рассказ о наиболее общих свойствах треугольника, в которым заложен очень глубокий теоретический смысл. Поехали!
НАСТОЯТЕЛЬНО рекомендую перед прочтением данного материала ознакомиться с его первой частью. Не лишним для понимания будет и эта статья.
Напомню, что в прошлой статьей мы рассмотрели основные инварианты равностороннего треугольника, т.е. операции, которые оставляют его неизменным. Таких набралось 6 штук: поворот на 120 градусов (R), поворот на 240 градусов (R^2), тождественная операция (I), а также три симметрии S, SR и RS, которые я отобразил ниже:
В прошлой статье мы остановились на попытке комбинации инвариантов треугольника, так что предлагаю выполнить парочку и посмотреть, что получается:
Обратите внимание, что операция композиции инвариантов в нашем случае не коммутативна: от перемены мест операций поменялся и результат. Однако, можете проверить, что перестановка скобок не меняет результат, т.е. композиция обладает важным свойством ассоциативности.
Не лишним будет сделать вот что: записать в виде таблицы все наши преобразования. Сейчас всё объясню:
Нам нет необходимости проводить даже "виртуальные операции" с треугольником, т.к. равенств с прошлого рисунка уже достаточно для заполнения таблицы целиком. Обратите внимание, что пп. 2-6 и 7 все выводятся из строчки RSR = R путем добавления спереди или сзади (это важно) новых операций. Кроме того, три поворота R^3 (в сумме на 360 градусов) как и две симметрии S^2 дают тождественное преобразование I, как и композиция из двух одинаковых операций (кроме R).
Выводы по таблице
Итак, мы заполнили таблицу. Давайте сделаем выводы:
- Существует множество из шести инвариантов равностороннего треугольника X = {I, R, R^2, S, SR, RS}.
- Композиция - это операция, состоящая из набора инвариантов. Композиция ассоциативна, но не коммутативна. Результатом применения операции композиции всегда является элемент множества X (в таблице просто нет других ячеек). Обозначим её как "*".
- В множестве X существует единичный (нейтральный) элемент - тождественное преобразование I.
- Для каждого элемента множества X существует обратный элемент, который при "*" дает тождественное преобразование:
R -----> R^2 , т.к. R*R^2 = R^3=I.
RS-----> RS, т.к. RS*RS = I и т.д.
Постойте, Вам не кажется, что на множестве X мы только что определили группу по операции композиции (ссылка на определение группы) ? Правильно кажется! В следующей статье мы рассмотрим, что это за группа, как её можно получить, не используя геометрическую интерпретацию и докажем парочку интересных свойств.
Помните, сила теории групп - в идеализированной общности. Мало какой раздел науки позволяет рассматривать абсолютно разные явления с единой позиции. Это надо ценить. Спасибо за внимание!
-----------------------------------ПРОДОЛЖЕНИЕ------------------------------------------