Найти тему

Median в Машинном обучении простыми словами

Оглавление
Фото: @garciasaldana_
Фото: @garciasaldana_

Медиана (x̃, M; Мера центральной тенденции) – это центральное значение Выборки (Sample).

В математике медиана также представляет собой тип Среднего значения (Average), который используется для нахождения "центра". Поэтому ее еще называют мерой центральной тенденции.

Нечетное количество элементов ряда

Если в ряду нечетное количество элементов, то мы сортируем значения в возрастающем или убывающем порядке, а затем выбираем центральное.

Пример. Найдем медиану следующего ряда:

4, 17, 77, 25, 22, 23, 92, 82, 40, 24, 14, 12, 67, 23, 29

Расставив эти числа по порядку, мы получим:

4, 12, 14, 17, 22, 23, 23, 24, 25, 29, 40, 67, 77, 82, 92

Всего пятнадцать элементов, то есть 8-й будет центральным. Медианное значение этого набора чисел – 24.

Четное количество элементов ряда

Если в ряду четное количество элементов, медиана рассчитывается с помощью формулы:

-2

Пример. Найдем медиану следующего ряда:

1.79, 1.61, 2.09, 1.84, 1.96, 2.11

Выполнив подстановку, мы получим:

-3

Центральная тенденция

Помимо медианы, выделяют еще две другие меры центральной тенденции – Среднее значение (Mean) и Мода (Mode). Среднее – это частное от суммы всех Наблюдений (Observation) к их количеству. Мода – это наиболее часто повторяющееся значение выборки.

В Науке о данных (Data Science) медиана иногда используется вместо среднего значения, когда в последовательности есть выбросы, которые могут исказить среднее. Выбросы меньше влияют на медианное значение, чем на среднее. Медиана отделяет верхнюю половину выборки, генеральной совокупности или Распределения вероятностей (Probability Distribution) от нижней.

-4

Медиана и NumPy

Медиану можно вычислить с помощью NumPy. Для начала импортируем все необходимые библиотеки:

-5

Создадим массив из 6 элементов и вызовем встроенный метод median() :

-6

NumPy определяет четность числа элементов массива (6) и применяет тот или иной метод расчета (согласно формуле):

-7

Ноутбук, не требующий дополнительной настройки на момент написания статьи, можно скачать здесь.