Найти в Дзене
Енот-математик

Теория чисел на пальцах. Часть 5

Как известно математикам и любителям математики, простые числа не так уж и просты. С ними связаны многие сложные и даже не решённые за сотни лет задачи теории чисел. В конечных арифметиках с ними разобраться должно быть проще, поскольку, все числа в них можно перечислить и выяснить всё про все числа. В этой серии заметок мы исследуем основы теории чисел и колец с помощью двух простых конечных колец вычетов, составленных из пяти и десяти элементов. Мы уже знаем, что в полях, числовых системах, в которых все числа делятся на все ненулевые числа, понятие простоты не имеет смысла. Значит кольцо ℤ/5ℤ, являющееся полем, мы сегодня рассматривать не будем. В прошлый раз мы увидели, что в кольцах понятие делимости своеобразно и тесно связано с их идеалами. Можно ли в таком случае, вообще, говорить о простых элементах колец, и зачем бы они могли понадобиться? * * * Простые числа играют важную роль в основной теореме арифметики (ОТА), а она, в свою очередь, лежит в основе большинства методов
Оглавление

Как известно математикам и любителям математики, простые числа не так уж и просты. С ними связаны многие сложные и даже не решённые за сотни лет задачи теории чисел.

В конечных арифметиках с ними разобраться должно быть проще, поскольку, все числа в них можно перечислить и выяснить всё про все числа.

В этой серии заметок мы исследуем основы теории чисел и колец с помощью двух простых конечных колец вычетов, составленных из пяти и десяти элементов. Мы уже знаем, что в полях, числовых системах, в которых все числа делятся на все ненулевые числа, понятие простоты не имеет смысла. Значит кольцо ℤ/5ℤ, являющееся полем, мы сегодня рассматривать не будем.

В прошлый раз мы увидели, что в кольцах понятие делимости своеобразно и тесно связано с их идеалами. Можно ли в таком случае, вообще, говорить о простых элементах колец, и зачем бы они могли понадобиться?

* * *

Простые числа играют важную роль в основной теореме арифметики (ОТА), а она, в свою очередь, лежит в основе большинства методов целочисленного анализа. Так что, если мы хотим по-настоящему понять устройство конечных арифметик, надо выяснить как для них будет выглядеть и как будет работать ОТА.

Знакомая нам со школы, а человечеству — со времён Евклида, основная теорема арифметики гласит:

Любое натуральное число может быть единственным способом представлено в виде произведения простых чисел.

Простыми же мы называем числа, которые делятся только на себя и на единицу.

Давайте с помощью таблицы умножения выпишем, как раскладываются на множители положительные числа в ℤ/10ℤ.

Таблица умножения в ℤ/10ℤ.
Таблица умножения в ℤ/10ℤ.

Возможные разложения чисел на множители с точностью до их перестановки.
Возможные разложения чисел на множители с точностью до их перестановки.

Кошмар и путаница! Не похоже, чтобы числа раскладывались на простые множители единственным способом, как предписывает основная теорема арифметики. Неужели и с ней у нас беда?

Не торопитесь расстраиваться! Давайте разбираться. И начнём с того, что от натуральных чисел, которые не образуют даже кольца, перейдём к целым. А в них ОТА выглядит немного по другому, потому что среди целых чисел есть два делителя единицы (обратимых элемента): 1 и −1. Так что, например, простое число 7 и составное 12 можно представить в виде произведения не одним, а несколькими разными способами:

7 = 1×7 = (−1)×(−7).

12 = 3×2×2 = (−3)×(−2)×2 = 3×(−2)×(−2)

Это наводит на мысль, что если в кольце существует несколько делителей единицы, то они могут сбивать с толку, создавая видимость нескольких различных представлений числа в виде произведения.

Почему я назвал это видимостью? Смотрите, умножение на единицу ничего не меняет, верно? Давайте умножим произведение (−1)×(−7) на 1, но представим эту единицу нетривиальным образом, и пользуясь коммутативностью и ассоциативностью, перегруппируем множители:

(−1)×(−7) = (−1)×(−7)×1 = (−1)×(−7)×(−1)×(−1) = ((−1)×(−7))×((−1)×(−1)) = 1×7.

Получается, что "с точностью до множителей единицы", это одно и тоже разложение. Также можно показать, что три разных представления числа 12 эквивалентны.

Получается, что делители единицы, или обратимые элементы кольца — это особые числа, не учитывать которые нельзя.

По ассоциациям рразойдись!

Делители единицы образуют мультипликативную группу, то есть, некоторое подмножество чисел, замкнутое относительно умножения и имеющее обратные элементы. А что мы получим, если умножим все элементы мультипликативной группы, на число, в него не входящее? Давайте продолжим оставаться в привычных целых числах, в которых эта группа состоит из двух элементов {−1, 1}, и умножим её, скажем, на 2. Получим множество {−2, 2}, чем оно примечательно? С точки зрения делимости, тем, что оба этих числа делят друг друга нацело: 2 делится на (−2) и наоборот, (−2) делится на 2. И никакие другие пары чисел, кроме пар (−a, a) не обладают такой взаимной делимостью.

Числа, которые взаимно делятся друг на друга называются ассоциированными и получаются друг из друга умножением на делитель единицы. Действительно, пусть u это делитель единицы, с обратным ему элементом w. Для любых a и b, если a = bu, то b = aw. Значит, если a делится на b, то и b делится на a.

В кольце ℤ/10ℤ делителей единиц четыре: 1, 3, 7 и 9, а это значит, что для каждого числа в этом кольце можно построить множество ассоциированных с ним чисел. Например, с числом 2 ассоциированы числа 6, 4 и 8; число 5 ассоциировано само с собой, а с любым делителем единицы, ассоциированы все делители единицы.

Умножение на делители единицы позволяет разбить множество элементов кольца на смежные классы ассоциированных друг с другом чисел, в каждом из которых все числа делятся нацело друг на друга. В нашем случае эти классы будут такими:

{0}, {1,3,7,9}, {2,4,8,6}, {5}.

То есть, в ℤ/10ℤ не только число 4 делится на 2, но и 2 делится на 4, что легко проверить, заглянув в таблицу разложений на множители, и увидев, что 2 = 3×4 = 8×4.

Как же понимать такую симметрию? Обратите внимание на то, что все элементы класса {2,4,8,6} можно представить степенями двойки:

4 = 2×2 = 2², 8 = 2×4 = 2³, 6 = 4×4 = 2⁴.

Более того, не выходя за пределы таблицы умножения, эти же числа можно представить ещё большими степенями:

2 = 2×6 = 2⁵, 4 = 4×6 = 2⁶, 8 = 6×8 = 2⁷, 6 = 6×6 = 2⁸.

В этом смысле 2 = 2⁵ вполне может делиться на 4 = 2² или на 6 = 2⁴ и никакого противоречия не возникает!

В классе {5} число 5 является автоморфным, то есть равно самому себе при возведении в любую степень. И, наконец, элементы мультипликативной группы делителей единиц {1,3,7,9} тоже можно представить как степени:

{3⁴, 3, 3³, 3²} или {7⁴, 7³, 7, 7²}.

Получается, что все числа в ℤ/10ℤ можно представить, как степень себя или какого-то другого числа:

Здесь k = 0,1,2,3,...
Здесь k = 0,1,2,3,...

Какой кошмар! И в каком же смысле прикажете понимать разложение числа на простые множители, да ещё и единственным образом, если перед нами такое разнообразие и чисел и разложений, да к тому же, и отношение делимости может оказаться симметричным? И вообще, какое из этих чисел простое, а какое составное?

Енот в ужасе от разнообразия представлений чисел в ℤ/10ℤ.
Енот в ужасе от разнообразия представлений чисел в ℤ/10ℤ.

Усложняем простоту

Определение простого числа, как числа, которое делится только на себя и на единицу, необходимо как-то расширить. Для колец существует несколько эквивалентных определений простого элемента. Мы воспользуемся таким: элемент кольца R называется простым, если он является генератором простого идеала. В свою очередь, нетривиальный идеал I в кольце R называется простым, если IR и если для любых двух элементов из R, таких что их произведение ab входит в I следует, что a или b входят в I.

Последнее определение соответствует лемме Евклида:

Число p является простым, если произведение ab делится на p тогда и только тогда, когда a или b делятся на p.

И вот что мы можем заключить из этих определений:

Во-первых, в нашем кольце всего два идеала {0, 2, 4, 6, 8} и {0, 5}. И оба подходят под определение простых. Глядя на таблицу разложений чисел на множители, легко убедиться в том, что все элементы этих идеалов получаются только из произведений, содержащих числа, ассоциированные с генераторами этих идеалов. А в таком случае, эти генераторы — числа 2 и 5, и будут являться простыми элементами кольца ℤ/10ℤ.

Во-вторых, делитель единицы не может быть простым элементом, потому что он не может является генератором какого-либо идеала, отличного от всего кольца. Поэтому числа 1, 3, 7 и 9 не могут быть простыми. По этой же причине не являются простыми числа 1 и −1 в целых числах.

Однако, согласно ОТА, разложение на простые множители должно не только существовать, но и быть единственным. Что нужно подправить в этой теореме для колец? Надо лишь добавить, что единственность разложения требуется с точностью до умножения на делители единицы.

Например, мы видим в таблице умножения, что 2 = 1×2 = 3×4. Давайте умножим произведение 3×4 справа и слева на нетривиальные делители единицы (в произведении они дают единицу, так что это не изменит результата) и, переставив скобки, заменим множители на ассоциированные числа:

2 = 3×4 = 7×(3×4)×3= (7×3)×(4×3) = 1×2.

Получилось, что два эти разложения можно получить друг из друга умножив на единицу, собранную из её делителей. Точно таким же образом можно показать, что все разложения чисел на множители разбиваются на смежные классы по этому признаку эквивалентности:

Структура чисел в кольце ℤ/10ℤ. Синим цветом выделены делители единицы, зелёным — простые числа, а красным — разложения в канонической форме. Составные числа представляются в виде степеней простых с точностью до ассоциированных элементов.
Структура чисел в кольце ℤ/10ℤ. Синим цветом выделены делители единицы, зелёным — простые числа, а красным — разложения в канонической форме. Составные числа представляются в виде степеней простых с точностью до ассоциированных элементов.

Здесь в скобках сгруппированы разложения чисел на множители, эквивалентные с точностью до умножения на делители единицы. И вот теперь мы видим подтверждение тому, что в нашей арифметике лишь два простых числа: вполне нормальное 2 и автоморфное 5. Кроме этого, отчётливо выделились составные числа, которые имеют более одного разложения на эти простые.

Ура! Значит, ОТА в общей формулировке действует, и все наши числа, действительно раскладываются на произведения простых чисел.

Эта наиболее общая формулировка ОТА и расширенное понятия простоты оказываются ключевыми в прикладной теории колец. Именно простота идеалов и элементов, а также связанное с ними понятие неразложимости элементов колец, лежат в основе анализа разрешимости алгебраических уравнений и сводимых к ним задач из самых разных областей математики.

Задание:

  • Исследуйте классы ассоциированных чисел, выделите простые и разложите составные числа на циферблате часов, то есть, в кольце ℤ/12ℤ.
  • Примените определение простого идеала к идеалам в ℤ и покажите, что идеалы, генерируемые составными числами, не являются простыми.