В течение многих лет казалось, что эта голограмма будет навсегда отодвинута в область научной фантастики. Однако сегодня все по-другому, благодаря достижениям в области оптических технологий.
А что же такое голограма и как она работает?
Определение голограмм:
Голограмма - это трехмерное световое поле, которое генерируется посредством физической записи интерференционной картины. Эта картина включает в себя явление, называемое дифракцией, в результате чего получается виртуальное трехмерное изображение исходной сцены. В отличие от обычных 3D проекций, голограммы можно увидеть невооруженным глазом. Наука и практика создания голограмм называется голографией.
История создания голограмм:
Всё началось в 1947 году венгерско-британский физик Деннис Габор. Он разработал теорию голограммы, работая над повышением разрешения электронного микроскопа. Он придумал термин голограмма, который был взят из двух греческих слов "holos" (что означает "целое") и "gramma" (что означает "сообщение"). Однако оптическая голография действительно не продвинулась до появления лазера в 1960 году. Лазер излучает очень мощный всплеск света, который длится всего несколько наносекунд. Это позволило получить голограммы высокоскоростных событий, таких как пуля в полете. Первая голограмма человека была создана в 1967 году, что проложило путь для различных применений голографии.
Принцип работы голограммы:
- Голография включает в себя запись светового поля, а затем его реконструкцию в отсутствие оригинальных объектов. Можно представить себе это как нечто подобное звукозаписи, при которой звуковое поле, создаваемое вибрирующим веществом, обрабатывается таким образом, что впоследствии (при отсутствии исходного вибрирующего вещества) оно может быть восстановлено. Запись звука Ambisonic (трехмерная система пространственного звука), фактически, больше похожа на голографию, где при воспроизведении можно воссоздать определенные углы прослушивания звукового поля.
- Лазерный луч делится на два одинаковых луча с помощью светоделителя. Один из них отражается от объекта на носителе записи, а другой непосредственно передается на носитель записи. Таким образом, он не конфликтует с изображениями, исходящими от луча объекта. Когда два луча пересекаются друг с другом, они создают интерференционную картину, которая отпечатывается на носителе записи (в основном из галогенида серебра). Слой этого носителя записи прикреплен к прозрачной подложке, такой как стекло, которая воссоздает виртуальное изображение с гораздо более высоким разрешением, чем фотографическая пленка. Оптические инструменты, объект и носитель записи должны оставаться неподвижными относительно друг друга во время процесса. В противном случае интерференционная картина и голограмма будут размыты и испорчены.