За машинным обучением стоит много сложной математики и статистики. В целом, машины могут учиться двумя способами: либо они получаются данные и понимают исход какого-то события, либо впитывают в себя знания экспертов.
Первое - машинное обучение такое, каким его будем изучать мы. Второе - программирование алгоритмов, мы этого касаться не будем (в ближайшем будущем).
Вот вам данные:
0 0 0 = х
0 0 1 = у
0 1 1 = у
1 1 1 = у
1 0 0 = у
1 1 0 = у
1 0 1 = у
1 1 1 = у
Теперь вопрос: чему равняется 0 1 0 = ? Пишите в комментарии!
Машины выносят суждение так же, как и люди. Различие в том, что в отличие от нас (мешков с мясом) машины могут анализировать по-настоящему большие объёмы данных и при этом не ошибаться (или чётко определять с какой вероятностью возможна ошибка). Когда я загнал пример выше в алгоритм машинного обучения, он выдал мне ответ = у, скорость ответа 0.00001 милисекунды. Признайтесь, сколько у вас секунд ушло на решение этой задачи? Этот простой пример даст вам представление о том, насколько машины могут быстрее делать выводы, чем люди.