Найти тему
Наука на Урале

Ученые упростили компьютерную модель механики сердца

Ученые Уральского федерального университета (УрФУ, Екатеринбург) и Уральского отделения Российской академии наук (УрО РАН) разработали новую стратегию уменьшения вычислительной сложности, необходимую для построения моделей механики сердца.

 N — нормальное сердце, HF — сердечная недостаточность. Иллюстрация: Paolo Di Achille et al. / PLOS One
N — нормальное сердце, HF — сердечная недостаточность. Иллюстрация: Paolo Di Achille et al. / PLOS One

Исследователи установили, как в течение сократительного цикла изменяется объем желудочка в зависимости от изменения длины одного мышечного элемента сердца. В случае последнего расчеты сделать гораздо проще, чем для 3D-модели целой камеры сердца. Это позволило использовать модель более низкого порядка для вычисления сократительной функции желудочка и получить результат нужной точности с меньшими затратами на обучение программы.

Исследование поддержал Российский научный фонд (РНФ). Результаты проекта представлены в журнале PLOS One.

По словам завлабораторией математического моделирования в физиологии и медицине с использованием суперкомпьютерных технологий УрФУ Ольги Соловьевой, подход основан на хорошо установленных данных о сходстве сокращения изолированной мышцы и всего желудочка.

«В частности, мы демонстрируем, что простых линейных преобразований между растяжением мышцы и сокращением объема камеры достаточно для воспроизведения общих выходных данных давления и объема в 3D-моделях. Мы разрабатываем процедуру обучения стартовой конечно-элементной модели с повышением ее точности и приводим пример оптимизации параметров на основе медицинских изображений», — поясняет Ольга Соловьева.

Описание работы желудочка позволяет решать новые задачи, связанные с током крови, давлением и другими аспектами работы сердца. Используя предложенный подход, можно анализировать большие массивы данных реальных клинических исследований и выводить общие закономерности, применимые в медицинской практике.

Вячеслав Гурьев, один из авторов исследования, ведущий научный сотрудник группы по многомасштабным биологическим системам и моделированию исследовательского центра имени Томаса Дж. Уотсона IBM, Нью Йорк. Источник: Илья Сафаров/Фотоклуб УрФУ
Вячеслав Гурьев, один из авторов исследования, ведущий научный сотрудник группы по многомасштабным биологическим системам и моделированию исследовательского центра имени Томаса Дж. Уотсона IBM, Нью Йорк. Источник: Илья Сафаров/Фотоклуб УрФУ

Биофизические модели, учитывающие особенности конкретного пациента, могут быть полезны для увеличения эффективности подбора лекарств или при сердечной ресинхронизирующей терапии — установке кардиостимулятора, электроды которого контролируют работу сердца и помогают его камерам сокращаться в нужном ритме.

Во время сердечного цикла происходит синхронное сокращение двух предсердий, затем — желудочков, а потом расслабление. Здоровый орган работает в определенном ритме, но практически все его заболевания приводят к сбоям. Из-за этого наш «внутренний насос» утрачивает способность перекачивать кровь в нужном объеме, и развивается хроническая сердечная недостаточность. Она сопровождается постоянной усталостью, одышкой, отеками ног и нарушением работы органов — легких, печени, почек, так как организм не получает необходимое количество кислорода. Начинаются застои крови.

Несмотря на широкий спектр существующих методов лечения, хроническая сердечная недостаточность остается одной из ведущих причин смерти во всем мире. В России каждую минуту от нее погибает в среднем один человек.

Более детальное описание работы сердца в норме и при поражениях помогает ученым повышать эффективность существующих методов лечения и разрабатывать новые. Один из подходов — интеллектуальное моделирование — позволяет создавать численные модели, описывающие свойства и работу сердца. Эти вычисления можно использовать как аналитический инструмент, применимый в медицинской практике и при клинических испытаниях.

Сначала проводят расчеты на детализированных моделях сердца с большим количеством варьируемых параметров сердечной мышцы (миокарда), таких как проводимость и сократимость. Получаются «виртуальные клинические данные», которые можно сравнить с реальными результатами клинических исследований — ЭКГ, УЗИ и других. Среди них отбирают те, что попадают в диапазоны наблюдаемых показателей для определенной группы пациентов.

Затем при помощи машинного обучения находят зависимости между результатами модели и ее параметрами, таким образом получая значения, которые наиболее близки к показателям пациентов. Имея такие взаимосвязи, можно оценить состояние сердца конкретного пациента. Однако существующие модели требуют слишком сложных расчетов и неприменимы для повседневного использования, поэтому перед исследователями стоит задача их упрощения.

Отметим, исследования проводились совместно с коллегами из исследовательского центра IBM имени Томаса Джона Уотсона (Йорктаун Хайтс, штат Нью-Йорк).

УрФУ — один из ведущих университетов России, участник проекта 5-100, расположен в Екатеринбурге — столице Всемирных студенческих игр 2023 года. Вуз выступает инициатором создания и выполняет функции проектного офиса Уральского межрегионального научно-образовательного центра мирового уровня (НОЦ), который призван решить задачи национального проекта «Наука».