Найти в Дзене
Взор

Про прожорливых бактерий, растение, сок которого размягчает камень, и совершенную кладку Инков

Здравствуйте, уважаемые читатели.

Продолжаем вчитываться в статью Хельмута Трибуча о том, как инкские строители могли очень точно подгонять каменные блоки друг к другу. (Предыдущие статьи тут и тут)

Мы уже ознакомились с письменными източниками ( Сьеса де Леона и Гарсиласо де ла Вега), гипотезами о способах подгонки каменных блоков друг к другу, а также с тем, что в некоторых местах камни покрыты глазурью - стеклянистой массой. Автор статьи выдвигает версию изпользования инкскими строителями сильнокислого раствора на основе пирита, разъедающего магматические породы (гранит, андезит и др.). И утверждает, что знание разъедающего действия могло быть у инкских строителей, поработавших на горнодобывающих шахтах.

 Ацидофильные бактерии
Ацидофильные бактерии

Прежде, чем перейти к продолжению статьи Трибуча, предлагаю немного узнать о новейшей технологии извлечения металлов при помощи бактерий:

"В течение последних лет бактериально-химическое выщелачивание сульфидов металлов получило широкое развитие. Извлечение ценных компонентов из минералов с помощью микроорганизмов служит на сегодняшний день признанным биотехнологическим способом переработки сульфидных руд. Эта технология является экономически выгодной и экологически безопасной. В данной статье освещается механизм бактериально-химического окисления сульфидных руд, приведены характеристики и роль основных микроорганизмов в процессах биовыщелачивания. В настоящее время широкое применение получили хемолитотрофные ацидофильные микроорганизмы Acidithiobacillus ferrooxidans, At. thiooxidans, Leptospirillum ferrooxidans.с развитием метода чанового выщелачивания все больший интерес привлекают умеренно термофильные и термофильные бактерии и археи, которые при высоких температурах обеспечивают более высокую скорость окисления сульфидов."

 Leptospirillum ferrooxidans
Leptospirillum ferrooxidans

Каково, а?

= * = * = *

Но какие доказательства добычи сульфидов существуют на территории инков с доиспанских времён? Металлургичская деятельность инков основывалась на 2-3 тысячелетнем опыте, накапливающемся ещё до образования их империи. Их горнодобывающая деятельность, по существу, была сосредоточена на четырёх разных металлах: золоте, серебре, меди и олове. Также инкские металлурги знали платину и свинец. Большинство шахт, где добывали металлосодержащие руды, были связаны с залежами сульфидов или непосредственно их отложениями. Шахтёры индейцев прекрасно отличали золото от пирита (золота дураков). Но при Инках железо было неведомо и его не изпользовали.

Добычей полезных изкопаемых занималось государство, поэтому обычные граждане империи, которые должны были часть своего времени отрабатывать на государство, делали это на различных работах, в том числе и в шахтах. И для этого людей организовывали и отправляли в шахты так же, как отправляли и на государственные стройки. Поэтому вполне возможно, что одни и те же люди, потрудившись в шахтах, попав на строительство, могли применить опыт, полученный в других местах. Таким путём знание о корродирующем воздействии шахтных вод могло бы достичь стройплощадок.

И, если в те времена золото и серебро изпользовались главным образом для представлений и ритуалов, то бронза, сплав меди и олова становились всё более важными материалами для изготовления инструментов и оружия. Кроме олова, медь легировалась и золотом. Таким образом, технология добычи меди приобретает всё большее стратегическое значение, поэтому на обширной территории, где доминируют Инки, действовали многочисленные сульфидные рудники. А сульфидные рудники производили кислую шахтную воду, особенно когда там присутствовали богатые серой минералы (например, пирит). Процесс окисления шахтной воды в основном активируется автотрофными, ацидофильными, сульфидокисляющими бактериями, которые от окисления сульфидов получают энергию и обычно присутствуют в шахтах.

Пиритная грязь и ее свойства

Пирит - довольно стабильный минерал. Но когда разрушенные кристаллы пирита (золота дураков) в умеренно кислом растворе инъецируются сульфидокисляющими бактериями (например, Acidothiobazillus ferrooxidans, Lep-tospirillum ferrooxidans, Acidothiobacillus caldus, сравните рис. 9, слева), эти бактерии разпознают сульфид как източник энергии и начинают, окисляя его, получать энергию. В течение нескольких дней, пока образуются сульфат железа, ярозиты (группа гидратированных сульфатов железа) (например, KFe3 (SO4) 2 (OH) 6) и прочие соединения, pH раствора может упасть до значения между 0,5 и  1,0. Цвет ярозита и гетита - от желто-коричневого к коричневому, до красного лепидокрокита.

-5

Изпользуя каталитические промежуточные продукты, бактерии  изпользуют пирит (и иные сульфиды) в качестве химических източников энергии. Общая реакция бактериального окисления пирита:

Из этой формулы видно, что образуется кислота, а конечными продуктами окисления являются Fe3+ и сульфат. Производство кислоты является побочным продуктом жизнедеятельности бактерий по сбору химической энергии из твёрдого пирита. В ходе этого процесса измельчённые частицы сульфида металла превращаются в красноватую грязь, содержащую окисленные комплексы металлов (рис. 10).

Из-за своей деятельности по добыче сульфидных минералов инки-шахтёры знали кислотную грязь и видели её влияние на камни и различные сооружения. Известно, что гуминовая кислота медленно разлагает камни, содержащие кремнезём, такие как полевые шпаты или риолиты, преобразуя их в глину и каолин через образование промежуточного силикагеля. А при значении рН всего лишь 0.5, кислотность и концентрация протонов в пиритной окислительной грязи на 10 в 4-й степени выше, чем кислотность гуминовой кислоты.

Вопрос в том, в каком виде, в каких случаях и как наносили кислотную грязь.

Есть несколько актуальных вопросов: логистика транспортировки кислого ила из шахт (или он производился уже на месте?), возможное добавление в пиритовый раствор других веществ и обработка им камней. По первому вопросу в настоящее время могут быть сделаны только предположения. Относительно добавления в пиритную грязь других веществ есть интересный след, который можно извлечь из народного предания, существовавшего в высокогорьях Анд.

 Andean woodpecker, Colaptes rupicola
Andean woodpecker, Colaptes rupicola

История о Пито и его умении размягчать камни травой

Очень старые легенды из Перу, собранные священником Хорхе Лирой, сообщают, что когда-то боги подарили людям два вида ценных трав. Одним из них было «растение, которое в сочетании с другими компонентами превращало твёрдые породы в мягкую и формируемую массу».

Этот дар, по-видимому, был передан людям через Андского дятла, Colaptes rupicola, которого местные называют Pito. Это птица размером с голубя, которая изпользует клюв чтобы просверлить отверстие для гнезда в довольно твёрдых скалистых фасадах (но также и в стенах из самана). При этом, говорят, она изпользует траву, чтобы смягчить каменный материал. Говорят, что каменщики инков знали секрет.

Изследователи Перси Х. Фосетт (Percy H. Fawcett 1867–1925) и Хирам Бингхэм (Hiram Bingham 1875–1956), вновь открывший Мачу-Пикку, сообщили о странной истории Андского дятла и его « камнеподобном растении", которое в фольклоре иногда отождествляют с кустом высокой андской растительности, эфедрой андиной или с более крупным цветком Ageratina (Eupatorium) cuzcoensis. Научный факт заключается в том, что ни умение андского дятла изпользовать сок растений для размягчения камней, ни способность сока растений самостоятельно размягчать камни не могут быть подтверждены.

Но в легенде о том, что «растительное вещество, смешанное с другими компонентами, смягчает камни, что-то всё-таки может быть правдой», потому что она глубоко укоренилась в андском фольклоре.

И возможное объяснение очень простое. Свидетели кладочных работ инков, возможно, видели, что измельчённый растительный материал добавляли к красноватой глине  - кислой пиритной грязи, изпользуемой инками для обработки поверхностей камня.

И для применения растительных добавок вполне могла существовать причина. Опубликованные экспериментальные работы показывают, что разтворение силикатных минералов произходит посредством комбинированного действия: химического комплексообразования и кислотной атаки. И что органические добавки могут значительно увеличить разтворяемость. При pH ниже 5 разтворение содержащих кремнезём пород возрастает с уменьшением значения pH и, следовательно, с повышением кислотности. Органические комплексообразующие кислоты ускоряют этот процесс. При взаимодействии с алюмосиликатными минералами органические кислоты могут образовывать комплекс алюминия и, в меньшей степени, кремнезёма. Это снижает их химическую активность. Результатом является увеличение скорости разтворения. Особенно активен оксалат, потому что он эффективно образует комплекс алюминия и увеличивает разтворение силикатов в 15 раз при концентрации оксалата 1 мМ. Оксалат - химический агент, очень часто встречающийся в зелёных растениях. Фактически, уровень его накопления в зелёной массе может быть существенным. Примерами являются шпинат, гречка, петрушка, свёкла, картофель, мак, бобы, ревень, амарант, помидоры, крупы, сельдерей, цикорий.

 Воздействие кислотных дождей на мрамор
Воздействие кислотных дождей на мрамор

Многие андские растения могли бы быть източниками оксалатосодержащего сока для добавления к кислотной пиритной грязи. Если это добавление действительно произходило во времена инков и было известно некоторым людям, то могло стать причиной рождения мифа о сверлении дятлом Пито отверстий с изпользованием сока из растения, а со временем превратиться в широко разпространённый миф о растении, размягчающем камень. На самом деле, если сок был применён, то он, с его оксалатами, просто поддерживал и усиливал процесс разтворения силикатных пород пиритным шламом.

(продолжение следует)