Найти тему
Лампа Электрика

Какой драйвер для светодиода лучше – линейный или импульсный?

Оглавление

Практически каждый, кто имел дело со сверхъяркими светодиодами, знает, что питать их нужно через специальное устройство – драйвер. На сегодняшний день наиболее распространенными являются драйверы, работающие по двум принципам – линейной и импульсной стабилизации. Чем они отличаются и какой из них лучше?

Зачем светодиоду драйвер?

Чтобы разобраться в этом вопросе, необходимо познакомиться с вольт-амперной характеристикой (ВАХ) светодиода.

ВАХ светодиода
ВАХ светодиода

Из графика видно, что при постепенном увеличении напряжения ток через светодиод вначале не течет вообще. При достижении определенного значения Uнач появляется ток, и прибор начинает светиться тем ярче, чем выше напряжение. При достижении Uном ток достигнет паспортного значения Iном, а светодиод засветится в полную силу.

Такой режим будет соблюдаться до тех пор, пока напряжение не достигнет значения Uмакс. При дальнейшем его увеличении кривая ВАХ резко поднимается вверх – ток быстро выходит за предельно допустимое значение и полупроводник сгорает. Таким образом, для того, чтобы прибор не вышел из строя и вместе с тем имел максимальную светоотдачу необходимо точно поддерживать режим, при котором ток и напряжение имеют номинальное значение. Для этого, казалось бы, можно обойтись обычным стабилизатором напряжения, поскольку ток напрямую зависит от напряжения.

Но тут появляется новая проблема – ВАХ светодиода не постоянна и зависит от температуры кристалла. Чем выше температура, тем кривая ВАХ сильнее сдвигается влево и становится круче. Но Uном и Uмакс у всех светодиодов находятся практически рядом – окно обычно составляет десятые вольта. Стоит кристаллу чуть прогреться, как граница Uмакс сдвинется влево, полупроводник выйдет из режима.

Смещение ВАХ светодиода при прогреве
Смещение ВАХ светодиода при прогреве

Из графика видно, что после прогрева кристалла для поддержания номинального тока нужно уменьшить напряжение, но оно стабилизировано и ток стал критическим.

Из-за этого кристалл нагреется еще сильнее, сопротивление перехода снова упадет, ток повысится. Повышение тока в свою очередь вызовет еще больший нагрев кристалла. Начнется лавинообразный процесс, который закончится тепловым пробоем. По сути, прибор сожжет сам себя.

Таким образом, обычной стабилизацией напряжения вопрос не решить – необходимо стабилизировать ток и держать его на уровне Iном. Для этого и служит драйвер, который, по сути, является стабилизатором тока. Вполне очевидно, что характеристики драйвера, в частности, ток стабилизации, должны совпадать с характеристиками светодиода, которые указаны в паспорте.

Примечательно, что в паспорте указывается не рабочее напряжение светодиода, а его рабочий ток, и теперь это понятно.

Драйверы – какие бывают и чем отличаются

Как было указано выше, драйверы, питающие светодиоды, могут быть двух типов – линейные и импульсные. И те, и другие выполняют одну и ту же задачу – стабилизируют ток, протекающий через светодиод, на заданном уровне. Но принцип стабилизации у них существенно отличается.

Линейные

По сути, такой стабилизатор представляет собой переменный резистор, но движком управляет не рука человека, а электронная схема.

 Упрощенная схема линейного стабилизатора тока
Упрощенная схема линейного стабилизатора тока

При подаче на вход схемы напряжения Uвх, оно проходит через регулирующий элемент РЭ, схему контроля тока КТ и подается на выход, к которому подключена нагрузка. Узел КТ контролирует ток и в зависимости от его величины изменяет сопротивление РЭ. Ток мал – сопротивление РЭ уменьшается, велик – увеличивается. В результате на нагрузке поддерживается тот ток, на который настроен конкретный КТ.

Регулируется, конечно, не ток, а напряжение на нагрузке, но именно от его величины зависит величина тока.

Стабилизатор, работающий по такому принципу прост в построении, достаточно надежен, при необходимости легко ремонтируется. Стоит он недорого и имеет хорошие массогабаритные показатели. Кроме того, подобная схема осуществляет безобрывную регулировку тока и не создает импульсных помех в цепях питания.

Но есть у этого принципа и существенный недостаток – низкий КПД. Линейный стабилизатор по своей сути - регулируемый делитель напряжения. Нужная часть Uвх подается на нагрузку, остальное бесполезно рассеивается на регулирующем элементе, роль которого обычно выполняет транзистор того или иного типа. Что касается КПД, то его несложно рассчитать, воспользовавшись простой формулой:

КПД = Uвых/Uвх

Входной и выходной токи при этом одинаковы и в расчете могут не учитываться. То есть чем выше разница между входным и выходным напряжениями, тем ниже КПД. Так, при питании восемнадцативаттного светодиода CREE XM-L2 от двенадцативольтового источника КПД стабилизатора составит 50%, а мощность, рассеиваемая на регулирующем элементе, будет достигать тех же 18 Вт. То есть половина энергии источника питания будет просто бесполезно греть РЭ, которому, естественно, понадобится теплоотвод.

Импульсные

Принцип работы стабилизаторов этого типа в корне отличается от принципа линейной стабилизации.

Упрощенная схема импульсного стабилизатора тока
Упрощенная схема импульсного стабилизатора тока

Здесь регулирующим элементом является ключ К, а схема дополнена дросселем L и диодом. При замыкании ключа дроссель начинает запасать энергию в магнитном поле, а ток через него постепенно возрастает. Диод в это время заперт и в процессе не участвует.

Как только ток достигнет заданной величины, токовый контроллер КТ разомкнет ключ. Откроется диод и дроссель начнет возвращать запасенную энергию в цепь. Постепенно ток начнет уменьшаться и как только он достигнет критически низкого значения, КТ снова замкнет ключ К. Процесс повторится.

Очевидно, что на регулирующем элементе, работающем в ключевом режиме, будет рассеиваться намного меньшая мощность, чем при работе в режиме линейной стабилизации. Именно поэтому, стабилизаторы, работающие по этому принципу, имеют высокий КПД, который при правильно подобранных элементах может достигать 98% даже при больших токах коммутации. При этом регулирующему элементу не понадобится громоздкий радиатор, что существенно улучшит массогабаритные показатели.

Впрочем, улучшит не существенно, так как место радиатора займет дроссель. Он несколько меньше радиатора, но при больших токах коммутации может иметь достаточно большие размеры.

Что касается недостатков, то есть и они. Схема, работающая по такому принципу, много сложнее схемы с линейной стабилизацией и, естественно, стоят дороже. Но самое главное - регулирующий элемент, работающий в ключевом режиме, создает высокочастотные (до мегагерц) помехи, распространяющиеся как по цепям питания, так и в виде радиоволнового излучения. Подобные помехи могут мешать работе радиоприемной, звукоусилительной и другой чувствительной аппаратуры.

Какой драйвер лучше?

Исходя из вышесказанного однозначно ответить на этот вопрос сложно. Линейная схема стабилизации тока оправдывает себя лишь при работе с малыми (до 100 мА) токами или небольшой разницей между входным и выходным напряжениями. Исключение может составлять лишь случай, когда необходимо полное отсутствие помех – в звукозаписывающих студиях, больницах с чувствительным оборудованием и пр.

Импульсные драйвера, хотя и имеют свои недостатки, в большинстве случаев все же предпочтительнее линейных. Именно поэтому на сегодняшний день они практически вытеснили приборы линейного типа, оставив им лишь узкую строго ограниченную нишу.