Найти в Дзене

Машинное обучение: как анализ больших данных меняет мир

Новую магистратуру «Прикладные задачи машинного обучения и анализ больших данных» открывает в этом году IT-центр МАИ Интерес к машинному обучению в мире огромен, а практическая значимость его постоянно растёт: современные инструменты позволяют быстро анализировать большие данные и принимать оптимальные решения. Научиться работать с технологиями будущего позволяет новая магистратура: «Прикладные задачи машинного обучения и анализ больших данных», которую в этом году открывает IT-центр Московского авиационного института. Руководитель программы Владимир Судаков, д. т. н., ведущий научный сотрудник Института прикладной математики им. М. В. Келдыша РАН: В нашей программе мы сделали упор, с одной стороны, на получение фундаментальных знаний в области функционирования нейронных сетей, методов оптимизации, байесовских подходов, систем поддержки принятия решений. При этом мы помогаем студентам вырабатывать практические навыки создания и аналитики IT-продуктов, использование современных языков п
Новую магистратуру «Прикладные задачи машинного обучения и анализ больших данных» открывает в этом году IT-центр МАИ

Интерес к машинному обучению в мире огромен, а практическая значимость его постоянно растёт: современные инструменты позволяют быстро анализировать большие данные и принимать оптимальные решения. Научиться работать с технологиями будущего позволяет новая магистратура: «Прикладные задачи машинного обучения и анализ больших данных», которую в этом году открывает IT-центр Московского авиационного института.

Руководитель программы Владимир Судаков, д. т. н., ведущий научный сотрудник Института прикладной математики им. М. В. Келдыша РАН:

В нашей программе мы сделали упор, с одной стороны, на получение фундаментальных знаний в области функционирования нейронных сетей, методов оптимизации, байесовских подходов, систем поддержки принятия решений. При этом мы помогаем студентам вырабатывать практические навыки создания и аналитики IT-продуктов, использование современных языков программирования и библиотек, позволяющих эффективно реализовать современные методы. Это, например, языки Python, R, Ruby, библиотеки keras, tensorflow, numpy, pandas, scikit, matplotlib, fann, scip.
-2

Основное конкурентное преимущество выпускников новой магистратуры — способность к комплексному решению сложных проблем. Это и системный анализ потребностей бизнеса, формализация прикладных задач машинного обучения на языке математических моделей, выбор необходимых программных систем, проектирование структур данных и программную реализацию алгоритмов искусственного интеллекта и анализа больших данных.

Программу открывает IT-центр МАИ совместно с выпускающей кафедрой «Математическая кибернетика» (805) факультета «Информационные технологии и прикладная математика». Кафедра обладает богатым опытом подготовки специалистов и магистров по направлению «Информационные технологии в управлении» специальности «Прикладная математика».

Андрей Пантелеев, д. ф.-м. н., профессор, заведующий кафедрой «Математическая кибернетика» МАИ:

Наши выпускники успешно работают в IT-компаниях, институтах РАН, корпорациях авиационно-космической отрасли. В связи с открытием новой магистерской программы нам хочется использовать традиции подготовки кадров в области создания современных математических моделей, системного анализа, решения задач управления, оптимизации и принятия решений, а также привлечь к учебному процессу выпускников кафедры и её аспирантуры, чья повседневная деятельность в ИТ-компаниях неразрывно связана с прикладными задачами машинного обучения и анализа больших данных
-3

Промышленный партнёр программы — компания Ozon, крупный российский интернет-магазин. В 2019 году Ozon занял пятую позицию в рейтинге журнала Forbes «20 самых дорогих компаний Рунета — 2019».

Ольга Зверева, руководитель направления по развитию стажерских программ Ozon:

Мы очень активно работаем с молодыми специалистами. Студенты МАИ отлично подходят нам по профилю. Мы поддерживаем развитие IT-направления и будем рады дать практический опыт уже во время обучения. IT-магистратура даёт очень хороший бэкграунд для дальнейшего развития. Без IT представить мир будущего уже очень сложно. Поэтому мы с удовольствием подключаемся к программе.

Кроме того, партнёром магистерской программы является Институт прикладной математики им. М. В. Келдыша РАН, занимающийся не только теоретическими исследованиями, но и созданием прикладных программных систем для авиации и космонавтики. Ещё один партнёр — IT-компания ОВИОНТ ИНФОРМ — разработчик систем бюджетирования и управления финансами. Обучающиеся смогут проходить стажировку в данных компаниях, получить доступ к реальным данным, опробовать свои разработки на практике, выполнить магистерские диссертации по актуальной тематике предприятий-партнёров.

Выпускники смогут работать ведущими системными аналитиками, Data Science инженерами, разработчиками систем машинного обучения, аналитиками больших данных, архитекторами систем поддержки принятия решений, проектировщиками систем распознавания образов.

Владимир Судаков:

Чтобы понять степень востребованности в будущем специалистов данного профиля, достаточно зайти на один из основных сайтов по поиску работы — hh.ru — и набрать ключевые слова «Data Science», «Machine Learning», «Big Data». Результатом поиска будут сотни вакансий. Объёмы анализируемых данных всё время увеличиваются, мощности современных компьютеров для их обработки непрерывно возрастают, создаются специальные процессоры для машинного обучения — это позволяет надеяться, что и потребности в специалистах в области машинного обучения и анализа больших данных будут только увеличиваться. А значит, будет расти и уровень зарплат. Сегодня такие специалисты получают от 125 до 300 тысяч рублей. Кроме того, уже в процессе обучения магистранты смогут начать участвовать в конкурсах по машинному обучению, например, на сайте kaggle.com, где в случае успехов призы составляют от $5 000 до $200 000.

Кто сможет учиться на программе?

Чтобы освоить программу новой магистратуры, нужно иметь навыки программирования на любом языке, в том числе с использованием объектно-ориентированного подхода. Необходимы хорошие знания в области линейной алгебры, дискретной математики, теории графов, математической логики и теории алгоритмов, теории вероятностей и математической статистики.

Андрей Алексейчук, к. ф.-м. н., представитель компании ОВИОНТ ИНФОРМ:

Работа с большими данными — весьма творческий и разносторонний процесс, результатом которого является выявление ранее неизвестных закономерностей в процессах, происходящих в реальном мире. Такая сфера деятельности может заинтересовать студентов с навыками аналитического мышления, способных проявлять творческий подход к решению задач и находить нестандартные решения. При поступлении обязательна фундаментальная математическая подготовка, также приветствуются навыки работы с языками программирования Python или R, являющимися де-факто стандартом в области машинного обучения.