Найти в Дзене
Наука на Урале

Люминесцентные материалы помогут создать новые нанолекарства

Создавать новые нанолекарства помогут люминесцентные материалы, уверены ученые Уральского федерального университета (УрФУ, Екатеринбург). Исследования в данной области получили поддержку Российского фонда фундаментальных исследований, выделившего 3 млн рублей на три года. Часть работы описана в журнале Organic & Biomolecular Chemistry.

Визуализация клеток линии HeLa инкубированных с красителем Hoechst 33258 и синтезированным флуорофором (1.0 µM, 0.5 h at 37 °C) с помощью конфокальной микроскопии
Визуализация клеток линии HeLa инкубированных с красителем Hoechst 33258 и синтезированным флуорофором (1.0 µM, 0.5 h at 37 °C) с помощью конфокальной микроскопии

На сегодняшний день потребности медицины диктуют необходимость создания новейших флуоресцентных веществ. Такие вещества должны обладать высокой интенсивностью излучения, настраиваться по всему диапазону длин волн испускания и быть долговечными. Не менее важны доступность исходных реагентов, а также мягкие условия и простота синтетических процедур.

По словам профессора УрФУ Наталии Бельской, выполнение всех этих требований приводит к постоянному расширению исследований, связанных с поиском новых флуоресцирующих соединений, удовлетворяющих потребностям различных направлений их использования.

«Большинство фундаментальных исследований люминесцентных материалов проводится в растворах с незначительными межмолекулярными взаимодействиями. Однако в реальных условиях флуорофоры часто используются в агрегированных состояниях и контакты между молекулами играют существенную роль», — говорит Бельская.

Примером могут быть гидрофобные люминофоры, используемые в качестве хемосенсоров. Однако биология, медицина и фармакология настоятельно требуют новых флуорофоров для водных сред. Одним из решений этой проблемы является поиск новых органических фотоактивных материалов, способных образовывать в водных средах тонкие суспензии. В этом случае их можно рассматривать как органические наночастицы. По сравнению с флуоресцентными неорганическими наночастицами (квантовыми точками) они обладают высокой биосовместимостью, являются биоразлагаемыми, для них можно достаточно легко осуществить настраивание оптических свойств с помощью моделирования структуры вещества. И что более всего важно — они обладают значительным повышением интенсивности флуоресценции в агрегированных средах и в твердом состоянии.

Проект, предложенный группой студентов, аспирантов и научных сотрудников под руководством Наталии Бельской, предлагает для создания новых органических наноструктур применение одного из явлений, обнаруженных совсем недавно, — повышения интенсивности излучения (AIE) при агрегации молекул флуорофора (AIE/AIEE-эффект).

Проект «Дизайн и синтез новых флуоресцентных органических наночастиц на основе AIE/AIEE эффекта и их использование в биологии, медицине и оптоэлектронике» основан на собственных разработках ученых для получения гетероциклических флуорофоров, на изучении их фотофизических свойств теоретическими (квантово-химическими расчетами) и экспериментальными (спектральными) методами, а также исследовании их поведения в биологических средах.

«Гетероциклические флуорофоры, которые мы планируем использовать для конструирования наночастиц, отличаются небольшим размером и являются в большинстве своем малотоксичными, биогенными веществами, — отмечает Бельская. — Это выгодно отличает их от тех, что использовали ранее или используют в настоящее время в других научных лабораториях. Более того, они способны к образованию слабых взаимодействий с другими биомолекулами, обеспечивающими транспорт и проникновение через клеточную мембрану, и сами могут проявлять терапевтический эффект, расширяя область применения полученных АIE/AIEE-флуорофоров. Например, в качестве нанолекарства».

Планируемая работа будет связана с использованием различных синтетических приемов и спектральных исследований, хорошо освоенных в группе.

Помимо производства лекарств, результаты исследований могут быть также востребованы для диагностики и лечения заболеваний. В частности, в онкологии для диагностики опухолей, обнаружения бактерий и вирусов, определения скорости кровотока, адресной доставки лекарственных препаратов. Перспективно применение таких технологий в электронике: к примеру, при создании OLED-приборов (мониторы, дисплеи, осветители), где используются органические светодиоды.

УрФУ — участник Проекта 5-100, ключевым результатом которого должно стать появление в России к 2020-му году современных университетов-лидеров с эффективной структурой управления и международной академической репутацией, способных задавать тенденции развития мирового высшего образования.