Найти тему
Биомолекула

Свинолюди, крысомыши и другие биотехнологические истории

Оглавление

В древнегреческих мифах есть куча чудовищ, и в том числе химера — создание с головой льва, телом козы и хвостом змеи. В биологии это слово приобрело немножечко другой смысл — химерами называют организмы, состоящие из генетически разнородных клеток.

В химерах кроется огромный потенциал. Если оставить за кадром нереалистичные пока идеи о боевых летающих слонах или мыслящих коварных крокодилах, химеры могут стать неоценимыми помощниками ученых сразу в нескольких областях.

Во-первых,

с их помощью можно выращивать всякие органы и ткани, на которых изучать эмбриональное развитие и дифференцировку тканей, а также использовать их как модели для изучения различных заболеваний.

Во-вторых,

химеры между человеком и другими животными имеют величайший потенциал для трансплантологии.

Дело тут вот в чем.

Любая трансплантация, то есть пересадка органа из одного организма в другой, — вражеское вторжение с точки зрения иммунитета организма-реципиента. Пересаженные клетки воспринимаются иммунными клетками хозяина как враги, захватчики — они не помечены «родными» молекулярными метками, значит, их надо как можно скорее уничтожить, пока не захватили власть у нас тут.

Поэтому, чтобы трансплантированный орган прижился, приходится подавлять иммунитет хозяина изо всех сил. И это сулит беды. Находясь в подавленном, сонном состоянии, иммунитет может проворонить настоящих захватчиков и не защитить организм от инфекции или рака.

Пациенту после трансплантации приходится проводить долгие месяцы с подавленным иммунитетом в стерильной комнате, и даже после этого сохраняется риск отторжения имплантированного органа. Поэтому сейчас трансплантация — это опасный шаг, идти на который приходится, только приняв все меры безопасности, и только в том случае, если другого выхода нет.

Все было бы иначе, если бы...

...человеку можно было пересадить его собственный орган, выращенный где-то вне его организма из его же собственных стволовых клеток. Мы ведь уже больше десяти лет умеем перепрограммировать дифференцированные клетки организма обратно в стволовые (они тогда называются индуцированными плюрипотентными стволовыми клетками (ИПСК)), и кое-кто даже успел получить за это Нобелевскую премию.

Увы!

Пока что ИПСК — это не панацея, а даже почти наоборот. Дело в том, что стволовым клеткам, чтобы вырасти во что им положено, нужны точные, очень точные, необычайно точные молекулярные подсказки. Череда сложных молекул в нужных концентрациях, нужных сочетаниях и в нужной последовательности должна добавляться к стволовым клеткам, чтобы клетки поняли, кем им надо стать.

Видимо, мы пока недостаточно знаем всю эту череду. И поэтому при выращивании органов «в пробирке», как бы тщательно мы ни старались добавлять к клеткам ростовые факторы в правильных концентрациях и в правильные моменты времени, ИПСК запутываются.

Но что, если вырастить органы из ИПСК не в пробирке, а сразу в организме, только не человеческом, а другого животного?

Тогда ИПСК будут окружены как раз теми веществами, какими надо, потому что вещества эти будут не добавляться искусственно, а выделяться окружающими пересаженные ИПСК клетками. И опасность развития из ИПСК рака, возможно, будет снята. Такой подход — это, можно сказать, Святой Грааль трансплантологии, потому что позволяет решить одни большие проблемы, не создавая при этом других больших проблем.

Загвоздка в том, что это оооочень сложно.

Чтобы вырастить химеру с нужным «химерным» органом, надо взять совсем маленький эмбриончик (который еще не умеет отличать «свои» клетки от «чужих»), нарушить у него развитие соответствующего органа (чтобы не было конкуренции!), подсадить ему в нужное место ИПСК, а потом его самого подсадить в матку животного его вида и позволить ему там развиться.

В Nature публиковалась японская группа, которая сделала, так сказать, химеризацию полного цикла.

Во-первых,

ребята получили ИПСК из мышей.

Во-вторых,

с помощью довольно замороченной методики редактирования генома под названием TALEN создали крысиные бластоцисты (это такая ранняя стадия эмбрионального развития), у которых не могла развиться поджелудочная железа.

В-третьих,

добавили к этим бластоцистам полученные в первом пункте ИПСК. Получившиеся химерные бластоцисты подсадили в матки крыс и вырастили из них крыс с мышиной поджелудочной — то есть искомых химер.

В-четвертых,

из получившихся химер вырезали поджелудочную железу, а из нее выделили островки Лангерганса, в которых водятся так бета-клетки, производящие инсулин.

-2

Наконец, в-пятых,

взяли и пересадили эти островки мышам, страдающим диабетом.

Мыши перестали страдать диабетом, и при этом к ним не пришлось применять иммуносупрессию, то есть, Святой Грааль трансплантологии был найден. Ну, по крайней мере, для мышей.

Работа, конечно, отличная, но ребята из американского института Солка, опубликовавшие после этого свою статью в  Cell, кое в чем заткнули японцев за пояс.

Они использовали для «убирания» неугодных органов из бластоцисты не громоздкую методику TALEN, а более изящную и гибкую — CRISPR. Благодаря этому они смогли не ограничиться поджелудочной (поджелудочная — это немножко мейнстрим), а вырастить в мышиных эмбрионах еще и крысиные глаза и сердце (правда, вопрос о том, до какого возраста доросли эмбрионы, в их статье деликатно замалчивается).

Но на этом исследователи не остановились. Они создали химеры свиньи и человека.

Сделали они это так (выглядит просто, на деле — чертовски сложно): получили бластоцисты свиней, вживили в них человеческие стволовые клетки на подходящих стадиях развития и подсадили в свиную матку. Поскольку выращивание свиней с человеческими клетками — неоднозначное занятие с точки зрения этики (не станут ли свиньи мыслящими?), исследователи не стали заходить слишком далеко и умертвили эмбрионы на 3–4 неделе развития, а затем проверили, что клетки человека в них сохранились и приумножились.

-3

Проверили они это, во-первых, изучив флуоресценцию (человеческие стволовые клетки они сделали флуоресцентными), во-вторых, прогенотипировав различные клетки эмбриона на присущие только человеку последовательности, а в-третьих, с помощью иммуногистохимии (то есть проверки наличия на клетках эмбрионов присущих человеку белков).

Выяснилось, что человеческие клетки в эмбрионах, конечно, есть, но их мало: куда меньше, чем в химерах между мышью и крысой. Видимо, связано это с тем, что слишком уж люди эволюционно далеки от свиней.

Это, конечно, только первые шаги, и до мыслящих свиней (как и до свиней — доноров человеческих органов) надо еще работать и работать. Но уже можно сказать, что данные работы поднимают целую толпу технических, а главное — этических вопросов.

Биомолекула благодарит вас за то, что вы прочитали эту статью до конца. Скоро расскажем еще много интересного, а больше про стволовые клетки можно узнать тут.

А пока будем рады вашим лайкам и подписке на наш канал — здесь мы рассказываем много интересного из мира науки! 💚