Данная статья относится к Категории: Построение научных теорий
Людвиг фон Берталанфи анализирует возникновение новых научных дисциплин в 30-е годы XX века:
«По-видимому, существует настоятельная потребность в распространении средств науки на те области, которые выходят за рамки физики и обладают специфическими чертами биологических, бихевиоральных и социальных явлений. Это означает, что должны быть построены новые понятийные модели. Каждая наука является в широком смысле слова моделью, то есть понятийной структурой, имеющей целью отразить определённые аспекты реальности. Одной из таких весьма успешно действующих моделей является система физики. Но физика - это только одна модель, имеющая дело с определёнными аспектами реальности. Она не может быть монопольной и не совпадает с самой реальностью, как это предполагали механистическая методология и метафизика. Она явно не охватывает все аспекты мира и представляет, как об этом свидетельствуют специфические проблемы в биологии и бихевиоральных науках, некоторый ограниченный аспект реальности. Вероятно, возможно введение других моделей, имеющих дело с явлениями, находящимися вне компетенции физики. […]
В настоящее время имеется ряд новых научных областей, стремящихся к осуществлению вышеуказанных целей.
Мы кратко перечислим их.
(1) Кибернетика, базирующаяся на принципе обратной связи, или круговых причинных цепях, и вскрывающая механизмы целенаправленного и самоконтролируемого поведения.
(2) Теория информации, вводящая понятие информации как некоторого количества, измеряемого посредством выражения, изоморфного отрицательной энтропии в физике, и развивающая принципы передачи информации.
(3) Теория игр, анализирующая в рамках особого математического аппарата рациональную конкуренцию двух или более противодействующих сил с целью достижения максимального выигрыша и минимального проигрыша.
(4) Теория решений, анализирующая аналогично теории игр рациональные выборы внутри человеческих организаций, основываясь на рассмотрении данной ситуации и ее возможных исходов.
(5) Топология, или реляционная математика, включающая неметрические области, такие, как теория сетей и теория графов.
(6) Факторный анализ, то есть процедуры изоляции - посредством использования математического анализа - факторов в многопеременных явлениях в психологии и других научных областях.
(7) Общая теория систем в узком смысле, пытающаяся вывести из общего определения понятия «система», как комплекса взаимодействующих компонентов, ряд понятий, характерных для организованных целых, таких, как взаимодействие, сумма, механизация, централизация, конкуренция, финальность и т. д., и применяющая их к конкретным явлениям. Поскольку теория систем в широком смысле является по своему характеру фундаментальной основополагающей наукой, она имеет свой коррелят в прикладной науке, иногда выступающий под общим названием науки о системах, или системной науки (Systems Science). Это научное движение тесно связано с современной автоматикой. В общем плане следует различить в науке о системах следующие области.
Системотехнику (Systems Engineering), то есть научное планирование, проектирование, оценку и конструирование систем человек- машина.
Исследование операций (Operations research), то есть научное управление существующими системами людей, машин, материалов, денег и т. д.
Инженерную психологию (Human Engineering), то есть анализ приспособления систем и прежде всего машинных систем, для достижения максимума эффективности при минимуме денежных и иных затрат.
Очень простой пример, свидетельствующий о необходимости изучения систем человек - машина, - это полёт на самолёте. Всякий, кто пересекал континенты на реактивном самолете, летящем с огромной скоростью, и кто вынужден был проводить среди толпы в аэропорту бесполезные часы в ожидании, может легко понять, что современная техника, используемая в воздушных, путешествиях, превосходна, в то время как «организационная» техника всё ещё находится на примитивном уровне.
Хотя в только что названных научных дисциплинах имеется много общего, в них, однако, используются различные понятийные средства. В системотехнике, например, применяются кибернетика и теория информации, а также общая теория систем. В исследовании операций используются методы линейного программирования и теории игр. Инженерная психология, занимающаяся анализом способностей, психологических ограничений и вариабильности человеческих существ, широко использует средства биомеханики, промышленной психологии, анализ человеческих факторов и т. д.
В настоящей статье мы не ставим перед собой цель охарактеризовать прикладную науку о системах; […] Нам лишь важно иметь в виду, что системный подход, как некоторая новая концепция в современной науке, имеет параллель в технике. Системный подход в науке нашего времени стоит в таком же отношении к так называемой механистической точке зрения, в каком системотехника находится к традиционной физической технологии.
Все перечисленные теории имеют определенные общие черты.
Во-первых, они сходятся в том, что необходимо как-то решать проблемы, характерные для бихевиоральных и биологических наук и не имеющие отношения к обычной физической теории.
Во-вторых, эти теории вводят новые по сравнению с физикой понятия и модели, например, обобщённое понятие системы, понятие информации, сравнимое по значению с понятием энергии в физике.
В-третьих, эти теории, как указывалось выше, имеют дело преимущественно с проблемами со многими переменными.
В-четвёртых, вводимые этими теориями модели являются междисциплинарными по своему характеру, и они далеко выходят за пределы сложившегося разделения науки. Например, если Вы внимательно просмотрите ежегодники Общества исследований в области общей теории систем («General Systems»), вы легко обнаружите следующее немаловажное обстоятельство: сходные и даже тождественные по своей структуре рассуждения применяются к явлениям самых различных видов и уровней - от сетей химических реакций в клетке до популяций животных, от электротехники до социальных наук.
Аналогичным образом основные понятия кибернетики вытекают из определённых специальных областей современной техники, однако, начав с простейшего случая термостата, который на основе обратной связи поддерживает определенную температуру, и переходя дальше к сервомеханизмам и автоматике в современной технике, мы обнаруживаем, что подобные же схемы применимы ко многим биологическим явлениям регулирования или поведения. Более того, во многих случаях имеется формальное соответствие, или изоморфизм, общих принципов и даже специальных законов. Одно и то же математическое описание может применяться к самым различным явлениям. Из этого, в частности, вытекает, что общая теория систем, помимо всего прочего, облегчает также научные открытия: ряд принципов может быть перенесен из одной области в другую без необходимости дублирования работы, как это часто происходило в науке прошлого.
В-пятых и, может быть, самое важное - такие понятия, как целостность, организация, телеология и направленность движения или функционирования, за которыми в механистической науке закрепилось представление как о ненаучных или метафизических, ныне получили полные права гражданства и рассматриваются как чрезвычайно важные средства научного анализа. В настоящее время мы располагаем концептуальными и в некоторых случаях даже материальными моделями, способными воспроизводить основные свойства жизни и поведения.
Следует подчеркнуть, что различные вышеперечисленные научные подходы не являются и не должны рассматриваться как монопольные. Один из важных аспектов современного развития научной мысли состоит в том, что мы более не признаём существования уникальной и всеохватывающей картины мира.
Все научные построения являются моделями, представляющими определённые аспекты, или стороны, реальности. Это относится также и к теоретической физике. Будучи далёкой от того, чтобы быть метафизическим представлением последней реальности (как это провозглашалось материализмом прошлого и всё ещё подразумевается современным позитивизмом), она является не чем иным, как одной из этих моделей, и, как показало развитие науки в последнее время, ни в коем случае не исчерпывающей и не единственной. Различные теории систем также являются моделями различных аспектов мира. Они не исключают друг друга и часто сочетаются при их использовании. Например, некоторые явления могут быть научно исследованы кибернетикой, другие - с помощью общей теории систем, причем вполне допустимо даже, что одно и то же явление в его различных аспектах может быть описано и тем и иным путем. Кибернетика соединяет модели информации и модель обратной связи, модели нервной системы и теории информации и т. д. Это, конечно, не исключает, а скорее предполагает возможность последующих синтезов, в которые войдут и будут объединены различные современные исследования целостности и организации. И действительно, в настоящее время постепенно строится такая синтетическая концепция, объединяющая, например, термодинамику необратимых процессов и теорию информации.
Различия между перечисленными теориями лежат в их особых модельных представлениях и в используемых математических методах. Поэтому мы переходим к вопросу о том, какими путями может быть осуществлена программа системного исследования».
Людвиг фон Берталанфи, Общая теория систем - обзор проблем и результатов, в Сб.: Системные исследования. Ежегодник, М., «Наука», 1969 г.
Если публикация Вас заинтересовала - поставьте лайк или напишите об этом комментарий внизу страницы.
+ Ваши дополнительные возможности:
25 октября 2020 года (воскресенье) в 19:59 (мск) Вы можете получить квалифицированные – а не любительские – ответы на Ваши вопросы по ряду направлений ТРИЗ и смежным дисциплинам:
ФСА – Функционально-стоимостной анализ;
РТВ – Развитие Творческого Воображения;
ЖСТЛ – Жизненная Стратегия Творческой Личности;
ТРИЗ-педагогика;
ТРИЗ-бизнес;
Новые разработки по ТРИЗ?
Вопросы принимаются только до 19 октября 2020 года (понедельник).
Зарегистрироваться и задать вопросы: https://vikent.ru/w0/