Найти в Дзене
НАУКА из первых рук

Небесная механика

Изучение физики обычно начинают с классической механики. Статистическую физику или квантовую механику интуитивно понять трудно, а классическая механика – это то, что у нас постоянно происходит перед глазами: кирпичи падают, мячики летают. Законы механики мы ощущаем на уровне интуиции, потому что с нами, людьми, то же самое происходит: время от времени мы падаем, иногда даже летаем. Так что небесная механика, самая изящная часть астрономии, для физика должна быть тоже интуитивно понятной «Культурный человек лишь слегка обгрызает кости, а потом бросает их под стол»
(цитата из мыслей пёсика Фафика) За одну лекцию изучить небесную механику – дело нереальное, поэтому знакомиться с ней мы будем на таком уровне, как подсказывает нам эпиграф. Он взят из замечательной книжки «Очерки о движении космических тел» Владимира Васильевича Белецкого, это один из наших сильнейших небесных механиков. Книжку я вам советую почитать, картинки там прекрасные, формулы тоже, и вообще от ее
Оглавление

Изучение физики обычно начинают с классической механики. Статистическую физику или квантовую механику интуитивно понять трудно, а классическая механика – это то, что у нас постоянно происходит перед глазами: кирпичи падают, мячики летают. Законы механики мы ощущаем на уровне интуиции, потому что с нами, людьми, то же самое происходит: время от времени мы падаем, иногда даже летаем. Так что небесная механика, самая изящная часть астрономии, для физика должна быть тоже интуитивно понятной

«Культурный человек лишь слегка обгрызает кости, а потом бросает их под стол»
(цитата из мыслей пёсика Фафика)

За одну лекцию изучить небесную механику – дело нереальное, поэтому знакомиться с ней мы будем на таком уровне, как подсказывает нам эпиграф. Он взят из замечательной книжки «Очерки о движении космических тел» Владимира Васильевича Белецкого, это один из наших сильнейших небесных механиков. Книжку я вам советую почитать, картинки там прекрасные, формулы тоже, и вообще от ее чтения получаешь наслаждение. Итак, сегодня мы будем знакомиться только с основными идеями и простейшими формулами.

Есть, к примеру, у нас планета (или любое другое небесное тело). Она движется и развивается под действием каких-то сил: гравитационных и негравитационных (светового давления, прямых ударов других тел). Есть также внутренние силы, которые вызывают деятельность вулканов, движение материков. Но сегодня мы будем говорить только о гравитации. И тему гравитации мы поделим пополам.

-2

Первая часть представляет самый простой подход к изучению движения небесных тел. Поскольку большие небесные тела практически шарообразны (о причинах этого я скажу ниже), их притяжение друг к другу можно описать притяжением материальных точек, расположенных в центрах тел и содержащих всю их массу (это мы тоже сегодня докажем). В этом случае неплохо работает очень простой, известный даже школьникам закон Ньютона. Правда он не вполне правильный, общая теория относительности (ОТО) корректнее описывает гравитацию, но для нас это пока несущественно.

Есть более тонкий подход. Он учитывает, что тела являются протяженными, и каждая их конкретная точка находится на разных расстояниях от соседнего тела. Значит, в общем случае нельзя одно и то же расстояние в формулу для гравитационной силы подставлять, надо учитывать зависимость гравитационной силы от расстояния до притягивающего тела. Это уже второе приближение к истине, и называется оно теорией приливов. Приливы – вообще штука интересная и очень важная. Но об этом – на следующей лекции. А сегодня будем говорить только о небесной механике.

Самая слабая сила

Давайте посмотрим на запись закона всемирного тяготения Ньютона, связывающего силу притяжения F между двумя материальными точками, в которых сосредоточены массы M и m, разделяемые расстоянием R: F = G∙M∙m/R² – и осознаем одну неприятную вещь. А именно: значение коэффициента пропорциональности G = 6,672∙10⁻¹¹ H∙м²/кг², называемого гравитационной постоянной, очень маленькое в знакомых нам единицах измерения (метры, килограммы, ньютоны). Если сто грамм на ладошку положить (полстакана воды) – это будет сила тяжести в один ньютон.

Прикинем, каковы гравитационные силы. Пусть каждый из вас весит порядка ста килограммов (не хочу никого обидеть, просто округляю для простоты вычислений) и находитесь за партами друг от друга на расстоянии одного метра. Подставляем эти значения в формулу и находим силу нашего взаимного притяжения: F ∿ 10⁻¹⁰∙100∙100/1² = 10⁻⁶ (Н), это одна миллионная от ста граммов или одна десятая доля миллиграмма. Это притяжение друг к другу вы не ощущаете, хотя закон говорит, что оно есть. Т.е. гравитация – самая слабая из всех природных сил, она практически неощутима. Почему же мы чувствуем, что нас к сиденью притягивает?

Очень малое значение гравитационного коэффициента говорит о том, что только большие массы могут ощутимо взаимодействовать друг с другом. Например, масса всей Земли – она большая, поэтому мы ощущаем притяжение к ней. А сидя рядом друг с другом, даже и не догадываемся, что существует сила гравитации.

Есть и другая особенность. Если сравнить значение этой физической константы с другими, например, зарядом электрона e = 1,60217739∙10⁻¹⁹ Кл, что сразу бросается в глаза? Огромная разница в количестве значащих цифр. Естественно задать вопрос: электроном, значит, физики интересуются, измерили его заряд до десяти значащих цифр, а гравитацию почему-то проигнорировали? Почему они не хотят измерить точно?

Отнюдь – хотят, но не могут. Ведь в формулу наряду с G входит величина M, но откуда мы можем знать массу Земли, кто-то ее взвешивал? Ее ведь на весы не положишь. Ускорение свободного падения a = F/m, а значит, и произведение GM мы можем измерить точно. Но чтобы отделить их друг от друга, надо действовать как-то по-другому.

Например, можно сначала взвесить тело на весах, а потом посмотреть, как оно притягивает соседей. Для этого «древний» английский физик Дж. Мичелл (1793) придумал крутильные весы – очень чувствительный прибор, с помощью которого другой английский физик Г. Кавендиш (1798) впервые измерил силу гравитационного притяжения двух лабораторных тел и определил значение гравитационной постоянной Ньютона. В нашем институте (Государственный астрономический институт им. П.К. Штернберга, МГУ) сделали такую же и потом очень долго мучились, чтобы решить типичную для физиков проблему: отделить от изучаемого явления все паразитные эффекты.

Схема крутильных весов, на которых Генри Кавендиш измерял гравитационные силы
Схема крутильных весов, на которых Генри Кавендиш измерял гравитационные силы

Сначала в этой константе была уверенно известна только одна значащая цифра, в XIX веке узнали вторую, в середине XX века третий знак появился, совсем недавно – четвертый. Пятый еще пока пытаются выяснить: даже при использовании самых лучших методов он у всех разный определяется, большей точности достичь не получается.

Движение двух тел

Единственное тело в абсолютной пустоте будет лететь по прямой, потому что на него никакие внешние силы не действуют – этот случай тривиальный и неинтересный. А простейшей задачей небесной механики считается задача двух гравитационно взаимодействующих тел. Но ее можно еще упростить, если взять одно тело очень массивное, а другое очень маленькое. Малое тело движется под влиянием центростремительного ускорения, а большому безразлично, что там вокруг него бегает, фактически оно не чувствует чужого присутствия и поэтому неподвижно. Эта ситуация называется задачей одного тела в центральном гравитационном поле.

-4

Если начало системы координат совместить с массивным телом, то вследствие его неподвижности такая система координат будет инерциальной. И это может оказаться очень полезным. Например, для космического аппарата мы можем записать, что действующее на него центростремительное ускорение равно отношению силы гравитационного притяжение к его массе. Если он обращается на достаточно дальней круговой орбите, то, сделав простое преобразование этой формулы, можно однозначно связать орбитальный период с массой притягивающего тела. Собственно говоря, это единственный надежный метод для определения массы планеты.

-5

Но задача становится сложнее, когда спутник находится близко к планете – при этом уже нельзя пренебрегать ее размером и формой. Казалось бы, эта задача очень сложная, потому что для решения надо вычислить притяжение спутника к каждой точке планеты и сложить векторы сил. Также и для геофизика, который интересуется внутренностью планеты и хочет узнать, какова гравитация на нужной глубине: ему надо бы вычислить притяжение ко всем точкам внешней части и ко всем точкам внутренней части. К счастью, еще Ньютон доказал две простые, но очень полезные теоремы, значительно облегчающие вычисления, – и за это ему спасибо.

-6

Понравился материал? Не забудьте поставить лайк и подписаться!

Читать далее: основы небесной механики