Формулы, связывающие физику на разных масштабах, получены в ОИЯИ

Сотрудники Лаборатории теоретической физики ОИЯИ вывели наиболее общие формулы, которые позволяют получать многопетлевые ренормгрупповые уравнения в произвольном обобщении Стандартной модели (СМ) без необходимости явного расчета миллионов диаграмм Фейнмана, возникающих в старших порядках теории возмущения. Рис. 1. Стандартная модель Благодаря работе БАК мы знаем, что Стандартная модель элементарных частиц прекрасно описывает огромное количество процессов на масштабах энергий, доступных современным ускорителям. В Стандартной модели имеется восемнадцать параметров, описывающих взаимодействия фермионов (кварков и лептонов), векторных (фотон, W/Z-бозоны) и скалярных (хиггс) бозонов. Например, среди них — «константа» сильного взаимодействия, определяющая эффективную силу взаимодействия кварков и антикварков. Однако ученые уже много лет ищут сигналы новой физики за пределами Стандартной модели. Теоретики пытаются построить обобщения CМ, а экспериментаторы стремятся найти следы новых частиц и выявить новые взаимодействия. Например, можно предположить существование более тяжелого аналога Z-бозона, взаимодействие которого с другими частицами задается новой калибровочной «константой» (обычно обозначаются как g). Или добавить несколько бозонов Хиггса, взаимодействие которых друг с другом, а также с кварками и лептонами будет задаваться «константами» самодействия (L) и Юкавскими «константами» (y) соответственно. Или, наоборот, задав модель Новой физики на очень высоком масштабе энергий (обычно предполагается, что в этом случае модель обладает большей симметрией, чем СМ), интересно понять, какие отклонения от предсказаний СМ можно измерить в экспериментах», — рассказал Александр Бедняков, начальник сектора квантовой теории поля ЛТФ ОИЯИ, один из авторов работы. «Ренормгрупповые уравнения показывают, как благодаря рождению виртуальных частиц происходит экранировка или антиэкранировка зарядов при изменении энергетического масштаба (ᵣ). Такого рода эффекты имеют универсальную природу, и мы пытаемся учитывать их в наших расчетах. Он добавил, что для того, чтобы найти зависимость «зарядов» от масштаба в конкретной модели, необходимо проводить трудоемкие вычисления диаграмм Фейнмана. Выполненные в ходе работы сложные вычисления были преобразованы в формулы, представляющие собой достаточно простые дифференциальные уравнения. Эти уравнения могут также применяться неспециалистами в петлевых вычислениях: например, их могут использовать физики-теоретики для анализа Новой физики. Также эти готовые формулы находят свое применение в физике конденсированного состояния – в теории фазовых переходов второго рода для расчета различных критических индексов. На больших расстояниях взаимодействие между кварками становится настолько сильным, что использование стандартной теории возмущений затруднено. В рамках наиболее общей перенормируемой теории в четырех измерениях впервые были выведены формулы для бета-функций калибровочных и юкавских констант взаимодействия в четырех и трех петлях соответственно [1]. Оригинальность используемого подхода состоит в том, что рассматривались простые игрушечные теории и с их помощью фиксировались модельно независимые коэффициенты в выражениях для РГ функций, минуя трудоемкие и громоздкие вычисления. Лаборатория теоретической физики им. Н.Н. Боголюбова имеет давнюю и богатую историю подобного рода вычислений.Научная Россия