Ученые из трех стран неинвазивно измерили нейронную активность мозга мыши на микроуровне с помощью квантового датчика на основе азотно-замещенной вакансии в алмазе. Сенсор способен улавливать сверхслабые магнитные поля, возникающие при прохождении ионных токов в аксонах мозга, а также слабые изменения нейронной активности, подобные тем, что возникают при нейродегенеративных заболеваниях. Метод не требует физического взаимодействия с тканями и, в отличие от магнитоэнцефалографии, не нуждается в таких специфических условиях, как сверхнизкие температуры или высокие плотности атомного газа, пишут ученые в статье на arXiv.org. Изучение активности мозга на уровне отдельных нейронов интересует ученых не только с научной точки зрения, но и с медицинской. Дело в том, что при нейродегенеративных заболеваниях, таких как болезнь Альцгеймера или склероз, изменения в организме появляются задолго до первых симптомов, в частности возникают нарушения распространения потенциалов действия в мозге. При этом методы, которые используют ученые, требуют либо вживления электродов в ткани мозга животного, либо использования лазерного излучения вкупе с токсичными красками, чувствительными к напряжению. Наиболее подробную картину нейронной активности с детализацией до 0,5 сантиметра предоставляет магнитоэнцефалография (МЭГ), при которой измеряется сверхслабые магнитные поля, возникающие согласно уравнениям Максвелла при прохождении ионного тока по аксонам. Еще в 2016 году ученые использовали сенсор на NV-центрах чтобы измерить магнитное поле одиночных нейронов кальмаров и червей, теперь же физики и нейробиологи из трех стран под руководством Джеймса Люка Уэбба (James Luke Webb) из Технического университета Дании впервые измерили нейронную активность мозолистого тела живого мозга мыши. Нейронную активность ученые инициировали с помощью биполярного стимулирующего электрода, который внедряли в ткань мозга в двух миллиметрах от зоны измерения. Сначала биофизики измерили магнитное поле, возникающее при прохождении ионных токов в аксонах, и сравнили его с потенциалом электрического поля, который фиксировался с помощью вживленных в исследуемую область электродов. В результате на графиках магнитного поля и потенциала ученые обнаружили два характерных пика, которые, по всей видимости, отвечают за прохождение тока по миелинизированным и неимелинизированным аксонам. Амплитуда пиков магнитного поля оказалась линейно пропорциональна амплитуде пиков электрического потенциала для всех трех срезов мозга разных особей мышей. Затем, чтобы проверить чувствительность квантового сенсора к отклонениям в нейронной активности, исследователи искусственно угнетали аксональные токи мозга, блокируя натриевые ионные каналы с помощью тетродотоксина. Ученые постепенно увеличивали концентрацию яда в растворе спиномозговой жидкости попутно проводя измерения магнитного поля и электрического потенциала, пока мозговая активность не была полностью подавлена. Так, американские ученые применили функциональное МРТ (которое определяет мозговую активность по концентрации гемоглобина), чтобы определить область мозга, реагирующую на музыку, а затем более детально исследовали регион с помощью электрокортикографии (электроды) и обнаружили нейроны, которые реагируют исключительно на пение, но не на другие звуки.N + 1