Раскрываем суть регрессии через смысл коэффициентов
Рассмотрим, как получить коэффициенты парной линейной регрессии, чтобы понять логику этой модели. Пусть наша формула предсказания цели через неизвестный x имеет следующий вид: Коэффициенты находятся путем решения задачи минимизации ошибки: Для поиска минимума найдем производные по 𝛽𝑜 и 𝛽1: То есть, 𝛽1 отражает линейную связь между зависимой и независимой переменной. Если ее нет, то cov = 0 и 𝛽1==0, а регрессия будет предсказывать среднее цели, что тоже не лишено смысла. Из формулы 𝛽1 через...
469 читали · 1 год назад
Optimizer в Машинном обучении простыми словами
Оптимизатор — это метод повышения производительности Модели (Model) Глубокого обучения (Deep Learning). Эти алгоритмы сильно влияют на Долю правильных ответов (Accuracy) и скорость обучения. При обучении модели глубокого обучения нам необходимо изменить Веса (Weights) – коэффициенты, которые присваиваются каждому Признаку-столбцу (Feature) и передают важность этого соответствующего признака при прогнозировании. Более того, веса позволяют минимизировать Функцию потерь (Loss Function). Чем меньше ее значение, тем ближе предсказание модели к реальным значениям...