Простые числа — это такая «соль» математики, без которой была бы невозможна вся эта прекрасная наука. Своим появлением они обязаны ещё античным грекам, которые пытались понять, как устроен мир. Простое число — это число, которое делится только на себя и на единицу. Например, 2, 3, 5, 7 — все они простые, потому что не имеют других делителей, кроме 1 и самих себя. Сразу же скажу, что единица — это не простое число, несмотря на общую заблуждение. Математики ценят простые числа за их уникальные свойства и применения...
Мы знаем, что такое простые числа. Это целые числа, которые делятся на себя и единицу. И все. Можно спросить: есть ли самое большое простое число? Не лишним будет привести здесь доказательство бесконечности ряда простых чисел. Следующее доказательство это принадлежит гениальному основателю геометрии, древнегреческому математику Евклиду и входит в его знаменитые «Начала». Оно относится к разряду доказательств «от противного». Предположим, что ряд простых чисел конечен, и обозначим последнее простое число в этом ряду буквою N. Составим произведение 1 х 2 х 3 х 4 х 5 х 6 х 7 ... N = N! и прибавим к нему 1. Получим N! + 1. Число это не делится ни на одно из чисел, меньших, чем N - всякий раз получится остаток 1. Но, быть может, оно делится на какое-нибудь число, большее, чем N? Что же может быть его делителем? Конечно, не простое число, так как простых чисел, больших нежели N, не существует (мы это предположили). Значит, оно составное. Но среди этих множителей должно непременно быть меньшее N (потому что разлагаемое число меньше N!), а мы знаем, что N! + 1 не делится ни на одно из чисел, меньших N - следовательно, не может делиться и на их произведение или на число, содержащее множителем хотя бы одно из них. Итак, предположение, что ряд простых чисел конечен, приводит к противоречию. Какую бы длинную серию последовательных составных чисел мы ни встретили в ряду натуральных чисел, мы можем быть убеждены, что за нею найдется еще бесконечное множество простых чисел.