Источник: Nuances of Programming Объем структурированных табличных данных увеличивается с каждым днем. Именно поэтому дата-сайентисту так важно уметь анализировать табличные данные с помощью Pandas. Хотя самообучение — отличный способ повысить квалификацию, иногда может пригодиться и опыт коллег, которые быстрее нашли ответы на актуальные вопросы. Хотите продвинуться в этом направлении и “прокачать” навыки работы в Pandas? Сделать это вам помогут решения, которые отвечают на десять вопросов из категории Pandas на StackOverflow, собравших наибольшее количество голосов...
Источник: Nuances of Programming Pandas — это библиотека для анализа и обработки данных, написанная на языке Python. Она предоставляет множество функций и способов для управления табличными данными. Основная структура данных Pandas — это датафрейм, который хранит информацию в табличной форме с помеченными строками и столбцами. В контексте данных строки представляют собой утверждения, или точки данных. Столбцы отражают свойства, или атрибуты утверждений. Рассмотрим эту структуру на простом примере...