43,5 тыс читали · 1 год назад
Формулы векторов. №2 ЕГЭ по математике профильного уровня 2025. Готовимся к ЕГЭ
Поскольку в ЕГЭ добавили задания с векторами, я собрала основные формулы. 1. Формула для нахождения координаты вектора 2. Формула для нахождения модуля (длины) вектора 3. Формула для суммы (разности) векторов 4. Формула для умножения вектора на число 5...
Ортогональные векторы – определение и свойства Ортогональные векторы — это векторы, у которых угол между ними равен 90 градусам. Они обладают рядом интересных свойств и находят широкое применение в различных областях науки и техники. Ортогональные векторы играют важную роль в линейной алгебре. Векторы могут быть представлены в виде направленных отрезков прямых, совпадающих началом, но имеющих разные концы. Угол между векторами можно найти с помощью скалярного произведения, которое определяется как произведение модулей векторов на косинус угла между ними. Наиболее простой пример ортогональных векторов — это оси координат. Ось OX и ось OY являются ортогональными векторами, так как угол между ними равен 90 градусам. Они образуют прямоугольную систему координат, которая широко используется в геометрии и физике. Одно из основных свойств ортогональных векторов — это то, что их скалярное произведение равно нулю. Это означает, что они ортогональны друг другу и не обладают общей составляющей. Это свойство позволяет использовать ортогональные векторы для решения различных задач, таких как построение перпендикуляров, нахождение расстояний и определение углов между плоскостями. Ортогональные векторы Ортогональность векторов имеет ряд свойств: 1. Скалярное произведение ортогональных векторов равно нулю: a · b = 0 2. Нулевой вектор ортогонален любому вектору: 0 · a = 0 3. Сумма ортогональных векторов также будет ортогональной вектор: a + b · c 4. Умножение ортогонального вектора на скаляр не нарушает его ортогональность: c · a = (c · a) Ортогональные векторы широко применяются в различных областях, включая физику, геометрию и информатику. Они являются важным инструментом для анализа и решения различных задач. Определение ортогональных векторов Математически определение ортогональных векторов заключается в том, что их скалярное произведение равно нулю. Скалярное произведение двух векторов определяется как произведение их длин и косинуса угла между ними. Другими словами, если у нас есть два вектора A и B, то они будут ортогональными, если их скалярное произведение равно нулю: A · B = 0 Ортогональные векторы могут быть представлены в… Подробнее: https://prime-obzor.ru/ortogonalnye-vektory-opredelenie-i-svojstva/