919 читали · 3 года назад
PCA в Машинном обучении простыми словами
Анализ главных компонент – это метод понижения размерности Датасета (Dataset), который преобразует больший набор переменных в меньший с минимальными потерями информативности. Уменьшение количества переменных в наборе данных происходит в ущерб точности, но хитрость здесь заключается в том, чтобы потерять немного в точности, но обрести простоту. Поскольку меньшие наборы данных легче исследовать и визуализировать, анализ данных становится намного проще и быстрее для Алгоритмов (Algorithm) Машинного обучения (ML) ...
594 читали · 2 года назад
Нейронные сети: формирование обучающих выборок
В этой лекции сформулируем определения, связанные с обучающими выборками, использующимися для обучения нейронных сетей (или других методов машинного обучения). Прежде всего, под ГЕНЕРАЛЬНОЙ совокупностью (population) понимается множество всех возможных прецедентов (объектов, ситуаций, событий, образцов и т.п.), при этом под ВЫБОРКОЙ (sample, set) понимается конечный набор прецедентов, некоторым способом выбранных из множества ВСЕХ возможных прецедентов, т.е. это подмножество из генеральной совокупности...