Раскрываем суть регрессии через смысл коэффициентов
Рассмотрим, как получить коэффициенты парной линейной регрессии, чтобы понять логику этой модели. Пусть наша формула предсказания цели через неизвестный x имеет следующий вид: Коэффициенты находятся путем решения задачи минимизации ошибки: Для поиска минимума найдем производные по 𝛽𝑜 и 𝛽1: То есть, 𝛽1 отражает линейную связь между зависимой и независимой переменной. Если ее нет, то cov = 0 и 𝛽1==0, а регрессия будет предсказывать среднее цели, что тоже не лишено смысла. Из формулы 𝛽1 через...
2002 читали · 1 год назад
Часть 1. Множественная регрессия в Excel.
Видео занятия Строим корреляционную матрицу. Для этого используем надстройку «Анализ данных» Выбираем в диалоговом окне «Анализа данных» - корреляция. Далее заполняем диалоговое окно: Получим корреляционную матрицу: Наблюдается тесная связь между переменной Y и Х1, Y и X2, так как попарные коэффициенты корреляции составляют 0,8602 и 0,7479 соответственно. Это выше 0,7 – связь достаточно тесная. Межу объясняющими переменными Х1 и Х2 коэффициент составляет 0,6311. Он ниже других, но имеет значение больше 0,6...