Как решать иррациональные неравенства? (Часть 2-я)
В первой части статьи были рассмотрены примеры решения иррациональных неравенств с помощью следующих равносильных преобразований: В данной статье рассмотрим неравенства, в которых помимо квадратного корня присутствуют другие функции, содержащие переменную, а также неравенства, в которых сравниваются два корня. Так как функция y=√x монотонно возрастающая, то для решения исходного неравенства необходимо с тем же знаком сравнить подкоренные выражения. Также нужно меньший корень (как будто "нижнюю границу") проверить на существование, т...