179 читали · 2 года назад
Как решать примеры со степенью простыми словами.
Не буду писать много лишнего, сразу начнем. Для начала, что такое степень простыми словами? Степень это количество раз которое надо число умножить само на себя. Например: 2² тоже самое, что 2*2. Для решения примеров со степенью понадобятся формулы: Буду брать маленькие цифры, что бы было понятнее. 1 случай: 2⁰ По первой формуле это равняется 1(это надо запомнить). 2 случай: 2¹ Число в первой степени равно самому себе. 3 случай: 2²*2² В этом случае надо степени сложить, а 2 оставить. 2²*2²=2⁴ Рассмотрим ещё случай с умножением...
1 год назад
СТЕПЕНЬ Степенью n числа а является произведение множителей величиной а n раз подряд. an — степень, где: a — основание степени, n — показатель степени Свойства степеней В математике степень с натуральным показателем имеет несколько важных свойств, которые позволяют упрощать вычисления. Всего их пять штук — ниже мы их рассмотрим. Мы будем употреблять такие понятия, как натуральные числа, целые числа, рациональные числа, иррациональные числа. Чтобы не запутаться, дадим им определение: Натуральные числа — это числа, которые мы используем, чтобы считать предметы: один банан, два банана. Целые числа — это все натуральные числа, все противоположные натуральным числам и число 0. Рациональными называют числа, которые можно представить в виде обыкновенной дроби. Например: 1/2; −5/3; 8/4. Иррациональные числа — это бесконечная десятичная дробь. Например, число пи как раз такое — 3,141592… Все, теперь мы точно готовы разбираться со свойствами степеней. Поехали! Свойство 1: произведение степеней При умножении степеней с одинаковыми основаниями, основание мы оставляем без изменений, а показатели степеней складываем: an · am = am+n a — основание степени m, n — показатели степени, любые натуральные числа. Свойство 2: частное степеней Когда мы делим степени с одинаковыми основаниями, основание остается без изменений, а из показателя степени делимого вычитают показатель степени делителя. a — любое число, не равное нулю m, n — любые натуральные числа такие, что m > n Свойство 3: возведение степени в степень Когда возводим степень в степень, то основание степени остается неизмененным, а показатели степеней умножаются друг на друга. (an)m = an· m a — основание степени m, n — показатели степени, натуральное число Свойство 4: возведение в степень произведения При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются. (a · b)n = an · bn a, b — основание степени n — показатели степени, натуральное число Свойство 5: возведение в степень частного Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй. (a : b)n = an : bn a, b — основание степени, b ≠ 0, n — показатель степени, натуральное число Сложение и вычитание степеней Как складывать числа со степенями и как вычитать степени — очень просто. Основной принцип такой: выполняется сначала возведение в степень, а уже потом действия сложения и вычитания. 23+ 34= 8 + 81= 89 63- 33= 216 - 27 = 189