Три способа решения одной задачи про равнобедренный треугольник и его медиану
Пусть дан равнобедренный треугольник АВС с боковой стороной, равной 4 см (АВ=ВС=4 см). Необходимо найти основание треугольника (АС), если его медиана, проведенная к боковой стороне, равна 3 см (AD=3 см). Решить эту задачу можно несколькими способами. 1 способ - используем подобие треугольников и теорему Пифагора. Достраиваем чертеж - опускаем перпендикуляры из вершины В и точки D на сторону АС. Треугольник ВЕС подобен треугольнику DFC по первому признаку подобия (по двум углам - угол С у этих треугольников общий, а углы ВЕС и DFC равны 90 градусов)...
Использование теоремы косинусов для нахождения неизвестной стороны треугольника
Дан равнобедренный треугольник АВС с боковой стороной, равной 4 см (АВ=ВС=4 см). Необходимо найти основание треугольника (АС), если его медиана, проведенная к боковой стороне, равна 3 см (AD=3 см). Первый способ решения этой задачи (с помощью теоремы Пифагора) рассмотрен в предыдущей статье>> 2 способ - используем теорему косинусов В этом случае никаких дополнительных построений делать не нужно. Рассмотрим треугольник ABD. Так как АD - медиана, то BD = DC = 2 см. Таким образом, в треугольнике ABD известны все три стороны и по теореме косинусов можно найти косинус угла ABD...