Алгоритм отбора корней в тригонометрических уравнениях
Здравствуйте! Многие мои ученики, с которыми я работал во время подготовки к ЕГЭ по математике, испытывали трудности с отбором корней тригонометрических уравнений на отрезке. При этом сами уравнения они решали весьма сносно. И целью сегодняшней статьи является обучению алгоритму отбора корней. Операция отбора корней тригонометрического уравнения на данном отрезке состоит из трёх основных этапов. 1. Нанесение корней на тригонометрическую окружность. 2. Отметки на тригонометрической окружности отрезка, внутри которого мы ищем корни...
1566 читали · 3 года назад
Тригонометрические уравнения. Простое, но точное нахождение корней на промежутке + формула для синуса.
Приветствую Вас! Как мне кажется, самое простое в высшей математике - это тригонометрия. Если изначально ухватить ее за хвост, то и думать тут негде. Но, чтобы так было, ее нужно правильно преподнести. Долго разглагольствовать по этому поводу не буду. Просто приведу решение, которое в основном дается в школах, а потом свое. Вот, к примеру, такое уравнение: Кто дает эту дебильнейшую формулу? Как, бля, детям ее понять, и плюс найти корни на промежутке, еще и с периодом Пк/2, ничего не упустив? Господа-препода, вы что, бредите? Есть же легкие формулы по синусу...