Геометрия В выпуклом многоугольнике 54 диагонали. Найдите количество его сторон и сумму углов
Сколько сторон может быть у выпуклого многоугольника, все диагонали которого равны?
Задача: Сколько сторон может иметь выпуклый многоугольник, все диагонали которого равны? Легко понять, что квадрат и правильный пятиугольник нам годятся — у каждого из них все диагонали равны. А может ли быть больше пяти сторон у такого многоугольника? Докажем, что больше пяти сторон быть не может. Пусть есть выпуклый шестиугольник ABCDEF, все диагонали которого равны. Рассмотрим четырехугольник ABDE: Проведем диагонали AD и BE: По условию должно быть верно, что BD = AE = BE = AD, значит BD + AE = BE + AD...