Достаточно часто на практике необходимо произвести переход в другой базис. Попробуем разобраться в этом вопросе. В данных задачах обычно нам даны два базиса, по которым требуется построить матрицу перехода. Пусть e=(e1,e2,...,en) базис, из которого необходимо сделать переход в базис f=(f1,f2,...,fn). Алгоритм будет примерно такой: 1) Выразить вектора базиса f через вектора e 2) Написать коэффициенты разложения векторов f в матрицу по столбцам...
Видео урока: Имеем математическую модель задачи из урока 1 (https://dzen.ru/a/Y487JtOi7SyKcvFB?share_to=link) Целевая функция запишется в виде: f = 4Х1 + 2Х2 +4Х3 + 3Х4 (мах) Система ограничений на ресурсы: 10Х1 + 20Х2 +15Х3+18Х4≤250 0Х1 + 5Х2 + 8Х3+ 7Х4 ≤40 15Х1 + 18Х2 +12Х3+ 20Х4 ≤100 8Х1 + 12Х2 + 11Х3+ 10Х4 ≤80 Условия не отрицательности: Хj ≥0 (j=1,4) Необходимо систему ограничительных неравенств модели привести к канонической форме. В 1-м неравенстве (≤) вводим базисную переменную x5. В 2-м неравенстве (≤) вводим базисную переменную x6...