Статья подготовлена для студентов курса «Data Scientist» в образовательном проекте OTUS. Как известно, уменьшение размерности применяется в машинном обучении в двух целях: для визуализации (чтобы данные с большим количеством признаков можно было отобразить в двух- или трёхмерном пространстве) и для уменьшения количества переменных. Второе применение является более фундаментальным, базовым и основным. Здесь уместно вспомнить курс школьной математики, а точнее, систему уравнений, в которой переменных было больше, чем самих уравнений...