Сеня рядом и Белла пришел. Былое
Когда я узнала этот способ решения уравнений, я здорово удивилась. Конечно, способ замены одной неизвестной величины на другую прост и банален, хотя и очень хорош: упрощает уравнение и помогает его решить. Но этот способ предлагает известное число, присутствующее в уравнении, заменить новой переменной. И уравнение решается! Давайте разберем этот способ на примере. Решить уравнение. х^2 - 5 = √х+5, (5 тоже под корнем). Возведем обе части в квадрат, помня, что х принадлежит области [-5; -√5] и х больше или равно √5. Тогда х^4 - 10x^2 + 25 - x - 5 = 0. И теперь самое главное. Пусть t=5, тогда t^2=25, х^4 - 2tх^2 + t^2 - x - t = 0, t^2 - t(2x^2 + 1) + x^4 - x = 0, D = (2x^2+1)^2 - 4(x^4 - x)= 4x^2+4x+1=(2x+1)^2, тогда t1 = (2x^2+1-2x-1)/2 = x^2-x, t2 = x^2 +x+1. Помним, что t=5, тогда x^2-x-5=0, D=21, x1=(1+√ 21)/2, x2=(1- √21)/2 ,не входит в ОДЗ. x^2+x-4=0, D=17, x3= (-1+ √17)/2, не входит в ОДЗ. x4=( -1- √17)/2. Итак, получилось 2 корня, входящие в область допустимых значений х, это х1 и х4. А теперь Вашему вниманию два уравнения, очень красивые, на тему необычной замены. Попробуем на вкус? 1. x^3 - (1 - √2)x^2 + 2 = 0. 2. x^2 + y^2 + 1/2 = x +y , нужно найти x и y, можно найти. Желаю Вам успешно решить уравнения, используя, возможно, новый для Вас способ. И здоровья Вам желаю.
9 ⋅ 2 не то же самое, что 2 ⋅ 9. Почему в задачах за это снижают отметку
Наше любимое выражение "от перемены мест множителей произведение не меняется" не всегда действует. Какая разница 9 ⋅ 2 или 2 ⋅ 9? Ведь в ответе всё равно будет 18. Разница очень существенная при решении задач. Этот переместительный закон можно применять только в примерах, в задачах - нельзя! У меня часто спрашивают об этом и ученики, и родители, и читатели канала. Приводят множество личных примеров по типу: "Сын написал в задаче 4 ⋅ 3 = 12, ему решение перечеркнули и написали 3 ⋅ 4 = 12, поставили тройку...