Исходя из определения графа (туть) можно хранить граф в виде списка вершин и списка ребер. Подобная структура позволяет легко проверить наличие вершины и ребра (A in V ), но задача проверки всех соседей становиться довольно сложной, т.к. нам надо перебрать весь список E и сопоставить его с V. Среди различных способов представления графов выделяют два самых популярных: Оба способа подходят для представления как ориентированных, так и неориентированных графов. Матрица смежности Она подходит для простых графов...
Источник: Nuances of Programming Графы в большинстве своем представляют собой неупорядоченные деревья. В основном это утверждение касается ненаправленных и невзвешенных графов. Однако оно остается в силе и в отношении направленных или взвешенных графов, либо направленных и взвешенных одновременно, только при этом надо детализировать понятие “неупорядоченности”. Направленные графы Прежде, чем познакомиться с направленным графом, взгляните на ненаправленный граф, представленный ниже: Ненаправленный граф позволяет свободно перемещаться между вершинами в любом направлении...