В математике есть классные закономерности, которые помогают делать сложные вещи как по щелчку пальцев. Например, возведение в квадрат любых чисел, оканчивающихся на 5. Не знаю, почему этому не учат в школе, почему об этом не рассказывают учителя...
Знали ли Вы, что сумма первых N нечетных чисел равна числу N, возведенному в квадрат? А между тем эту закономерность легко доказать. Рассмотрим первые нечетные числа и посмотрим чему равна их сумма. 1=1 (тут одно число, а квадрат единицы равен единице) 1+3=4 (в этом примере два идущих подряд нечетных числа, два в квадрате дает 4, пока все сходится) 1+3+5=9 (в этой строке сложили уже три числа и три в квадрате это 9) 1+3+5+7=16 (здесь складываются четыре числа, и четыре в квадрате равно 16) 1+3+5+7+9=25...