Сеня рядом и Белла пришел. Былое
Делаем проект по машинному обучению на Python. Часть 2
Собрать воедино все части проекта по машинному обучению бывает весьма непросто. В этой серии статей мы пройдём через все этапы реализации процесса машинного обучения с использованием реальных данных, и узнаем, как сочетаются друг с другом различные методики.
В первой статье мы очистили и структурировали данные, провели разведочный анализ, собрали набор признаков для использования в модели и установили базовый уровень для оценки результатов. С помощью этой статьи мы научимся реализовывать на Python...
Практические советы по очистке данных на Python.
Перед началом анализа данных важно провести их очистку и подготовку. Это поможет избежать ошибок и повысить точность результатов анализа. В Python есть множество инструментов для эффективной работы с данными. Рассмотрим основные шаги для их подготовки.
1. Работа с пропусками в данных Пропуски данных часто встречаются в наборах данных и могут привести к искажениям в анализе. Чтобы обнаружить пропущенные значения, можно использовать метод isnull(), который возвращает True для ячеек с пропусками....