3 месяца назад
Практические советы по очистке данных на Python.
Перед началом анализа данных важно провести их очистку и подготовку. Это поможет избежать ошибок и повысить точность результатов анализа. В Python есть множество инструментов для эффективной работы с данными. Рассмотрим основные шаги для их подготовки. 1. Работа с пропусками в данных Пропуски данных часто встречаются в наборах данных и могут привести к искажениям в анализе. Чтобы обнаружить пропущенные значения, можно использовать метод isnull(), который возвращает True для ячеек с пропусками....
1909 читали · 3 года назад
Предобработка данных. Работа с пропусками. Python.
Пропуск это просто отсутствие значения. Это часто встречающееся явление в датасетах. Да, вещь не приятная и ухудшает данные. Но ничего с этим не поделать. Мы можем только с ними поработать и улучшить качество нашего датасета. Есть такая замечательная библиотека в python как pandas. С её помощью мы и будем работать с пропусками. Так же нам понадобится библиотека numpy. Загружаем библиотеки и создаем небольшой датасет с пропусками: Теперь у нас есть настоящий датасет с пропусками. С ним то мы и поработаем...