8 месяцев назад
Практические советы по очистке данных на Python.
Перед началом анализа данных важно провести их очистку и подготовку. Это поможет избежать ошибок и повысить точность результатов анализа. В Python есть множество инструментов для эффективной работы с данными. Рассмотрим основные шаги для их подготовки. 1. Работа с пропусками в данных Пропуски данных часто встречаются в наборах данных и могут привести к искажениям в анализе. Чтобы обнаружить пропущенные значения, можно использовать метод isnull(), который возвращает True для ячеек с пропусками....