Прогнозирование временных рядов — полезный метод науки о данных, который можно применять в самых разных отраслях и областях. Вот руководство по началу работы с основными концепциями, лежащими в его основе. Прогнозирование временных рядов — это задача прогнозирования будущих значений на основе исторических данных. Примеры из разных отраслей включают прогнозирование погоды, объемов продаж и цен на акции. Совсем недавно он был применен для прогнозирования ценовых тенденций для криптовалют, таких как биткойн и эфириум...
Эксперт в области data science и руководитель компании STATWORX Себастьян Хайнц опубликовал на Medium руководство по созданию модели глубокого обучения для прогнозирования цен акций на бирже с использованием фреймворка TensorFlow. Мы подготовили адаптированную версию этого полезного материала. Автор разместил итоговый Python-скрипт и сжатый датасет в своем репозитории на GitHub. Импорт и подготовка данных Хайнц экспортировал биржевые данных в csv-файл. Его датасет содержал n = 41266 минут данных,...