Прогнозирование временных рядов — полезный метод науки о данных, который можно применять в самых разных отраслях и областях. Вот руководство по началу работы с основными концепциями, лежащими в его основе. Прогнозирование временных рядов — это задача прогнозирования будущих значений на основе исторических данных. Примеры из разных отраслей включают прогнозирование погоды, объемов продаж и цен на акции. Совсем недавно он был применен для прогнозирования ценовых тенденций для криптовалют, таких как биткойн и эфириум...
#arima #прогнозирование #анализ данных #регрессия #python Временной ряд состоит из множества входных параметров (одним из которых является время) и одного выходного параметра, зависящего от входных. Наша задача – найти эту зависимость. Прямым и наивным подходом в данной ситуации будет линейная регрессия вида а1х1 + а2х2 + … + anxn. Главной проблемой при таком подходе является автокорреляция временного ряда – зависимость показателей временного ряда от предыдущих значений. Это в итоге приводит к...