Особый страх учеников вызывает таблица значений тригонометрических функций. С чем это связанно? На взгляд учащихся, значения функций расставлены бессистемно и хаотично. При этом, значения могут быть отрицательными. Содержать дроби и корни. В совокупности эти причины приводят учеников к мысли, что это невозможно запомнить. В то же время заученные значения легко перепутать. Все эти страхи беспочвенны! Как я уже говорила ранее, любое сложное-это цепочка более простых, логических действий. Конечно, в математике, как и в других науках, необходимо учить формулы, определения, следствия и т...
Построить график функции: y = arctg(tg x) Найдём сначала область определения y(x) = arctg(tg x). Арктангенс определён при любом действительном значении аргумента, а тангенс не существует при x = π/2+πn (n∈ ℤ), из чего следует, что y(x) имеет смысл при x ≠ π/2+πn. Тангенс и арктангенс – нечётные функции, поэтому arctg(tg (–x)) = arctg(–tg x) = –arctg(tg x) Таким образом, y(x) является нечётной (y(–x) = –y(x) ) и её график симметричен относительно начала координат. Из периодичности тангенса следует,...