11 месяцев назад
Школьные задачи / Алгебра / А-32
Построить график функции: y = arccos(cos x) Найдём сначала область определения y(x) = arccos(cos x). Косинус числа cos x имеет смысл при любом действительном x. Областью значений аргумента арккосинуса, при которых он также определён,является отрезок [–1; 1], что полностью совпадает с областью значений функции косинуса. Отсюда следует, что заданная в условии задачи функция y(x) определена при любом действительном x. Функция косинуса является чётной. Отсюда arccos(cos(–x)) = arccos(cos x) Таким образом...
271 читали · 10 месяцев назад
О взаимосвязи тригонометрических функций и функции дробной части числа
Тот, кто хорошо помнит школьную математику, легко сможет назвать функции, обладающие свойством периодичности – синус, косинус, тангенс и котангенс. Некоторые, возможно, припомнят, что ещё есть секанс и косеканс. Существует, однако, функция, тоже обладающая периодичностью, но к тригонометрическим, как перечисленные выше, не относящаяся. Про неё иногда школьникам рассказывают на уроках – это дробная часть числа y = {x} . Я некоторое время назад «игрался» с этой функцией, получив в итоге целую россыпь...