Мультипликативная модель временного ряда
Раскрывая потенциал временных рядов: мульти-модальные модели от Google
Анализ временных рядов стал одним из ключевых направлений в науке о данных. От прогнозов погоды до анализа финансовых рынков — способность работать с данными, зависящими от времени, имеет огромное значение. Однако недавние разработки, представленные в блоге Google Research, показывают, что традиционный подход к анализу временных рядов можно значительно улучшить с помощью мульти-модальных моделей. Временные ряды — это данные, упорядоченные во времени, например, ежедневная температура, биржевые котировки или показатели датчиков IoT...
Руководство по прогнозированию временных рядов в Python на примере BTC
Прогнозирование временных рядов — полезный метод науки о данных, который можно применять в самых разных отраслях и областях. Вот руководство по началу работы с основными концепциями, лежащими в его основе. Прогнозирование временных рядов — это задача прогнозирования будущих значений на основе исторических данных. Примеры из разных отраслей включают прогнозирование погоды, объемов продаж и цен на акции. Совсем недавно он был применен для прогнозирования ценовых тенденций для криптовалют, таких как биткойн и эфириум...