519 читали · 3 года назад
Метрики в машинном обучении
О метриках можно услышать не только в мире машинного обучения. Они позволяют численно или в виде графиков отобразить качество работы той или иной системы. Например, вы подняли веб-сервер, и вам скорее всего будет интересно знать, сколько запросов обрабатывает ваш сервер в течение некоторого отрезка времени, чтобы понимать далека ли нагрузка от предельной, при которой ваш сервер упадет. В машинном обучении метрики возникают в тот момент, когда вы думаете о том, как вы будете отвечать перед начальством на вопрос: “Насколько качественно работает моя новенькая модель?”...
4179 читали · 3 года назад
Cross-Entropy в Машинном обучении простыми словами
Кросс-энтропия (Перекрестная энтропия) – это Функция потерь (Loss Function), которую можно использовать для количественной оценки разницы между двумя Распределениями вероятностей (Probability Distribution). Лучше всего это можно объяснить на примере. Предположим, у нас есть две модели, A и B, и мы хотели выяснить, какая из них лучше: Примечание. Цифры рядом с точками данных представляют вероятность того, что Наблюдение (Observation) принадлежит к соответствующему классу – цветовой зоне. Например,...