Адаптивные стохастические градиентные методы: теория и практика (рассказывает Константин Мищенко)
SGD в Машинном обучении простыми словами
Стохастический градиентный спуск (Stochastic Gradient Descent) – это простой, но очень эффективный подход к подгонке линейных классификаторов и регрессоров под выпуклые Функции потерь (Loss Function), такие как Метод опорных векторов (SVM) и Логистическая регрессия (Logistic Regression). Несмотря на то, что SGD существует в сообществе Машинного обучения (ML) уже давно, совсем недавно он привлек значительное внимание в контексте крупномасштабного обучения. SGD успешно применяется для решения крупномасштабных...