Это один из самых мощных моих проектов за последнее время. Кроме того, что тема временных рядов сама по себе важна в специфике работы торговой компании, ещё было интересно закрепить навыки работы с широким спектром ML инструментов, от линейной регрессии до SARIMA. Описание проекта Компания заказчика собрала исторические данные о заказах такси в аэропортах. Чтобы привлекать больше водителей в период пиковой нагрузки, нужно спрогнозировать количество заказов такси на следующий час. Требования и указания : Описание данных...
Рассмотрим способ разложения временного ряда на трендовую, сезонную и остаточную составляющие. Под трендом понимаем общую закономерность ряда (изменение среднего значения со временем), под сезонностью — повторяющуюся закономерность в определенных периодах (чтобы говорить о сезонности, в датасете должно быть несколько периодов).
Для демонстрации загрузим набор данных о статистике пассажирских перелетов с 1949 по 1960 из библиотеки pmdarima: Разложение на перечисленные выше составляющие можно произвести с помощью функции seasonal_decompose из модуля statsmodels...