Решить задачу коши для дифференциального уравнения второго порядка
Задача Коши для дифференциального уравнения второго порядка представляет собой задачу нахождения функции, удовлетворяющей данному уравнению и заданным начальным условиям. Пусть дано дифференциальное уравнение второго порядка: y''(x) + p(x)y'(x) + q(x)y(x) = f(x) и начальные условия: y(x₀) = y₀, y'(x₀) = y₀' где: Задача состоит в том, чтобы найти функцию y(x), удовлетворяющую этому уравнению и начальным условиям. Существует множество методов решения задач Коши для дифференциальных уравнений второго порядка...
9 месяцев назад
«Асимптотические методы для обыкновенных дифференциальных уравнений» Р. П. Кузьмина В книге рассматривается задача Коши для обыкновенных дифференциальных уравнений с малым параметром. Уравнения отличаются разным способом вхождения малого параметра. Рассмотрены следующие типы: регулярно возмущённая задача Коши, почти регулярная задача Коши, задача Тихонова, задача Коши с двойной сингулярностью. Для каждого типа уравнений построены ряды, которые обобщают ряд Пуанкаре и ряд Васильевой - Иманалиева. Показано, что ряды являются асимптотическими разложениями решений или сходятся к решению на отрезке, полуоси, на асимптотически больших интервалах времени. Доказаны теоремы, позволяющие оценить численно остаточный член асимптотики, интервал времени существования, область значений малого параметра. Предложен способ введения малого параметра в задачу. Книга предназначена тем, кто использует асимптотические методы теории обыкновенных дифференциальных уравнений. Это и многое другое вы найдете в книге Асимптотические методы для обыкновенных дифференциальных уравнений (Р. П. Кузьмина). Напишите свою рецензию о книге Р. П. Кузьмина «Асимптотические методы для обыкновенных дифференциальных уравнений» http://izbe.ru/book/85287-asimptoticheskie-metody-dlya-obyknovennyh-differencialnyh-uravneniy-r-p-kuzmina/