В современном мире, где данные становятся все более сложными и объемными, а задачи, требующие оптимизации, появляются на каждом шагу, необходимо использовать эффективные методы для их решения. Нелинейные уравнения и задачи линейного программирования (ЛП) играют ключевую роль в различных сферах: от финансов до инженерии и естественных наук. Успешное решение этих задач может существенно повлиять на принимаемые решения, например, в экономике и производстве, где ресурсное распределение и оптимизация процессов критически важны...
«Методы оптимальных решений в экономике и финансах» Излагаются основные методы оптимизации, которые применяются при решении прикладных экономических задач. Последовательно рассмотрены линейные модели в экономике, основы линейного программирования и теории двойственности, их применение при решении различных типов транспортных задач; математические методы решения задач нелинейного программирования и их применение в теории производства и потребления, методы решения задач многокритериальной оптимизации и динамического программирования, основы теории игр и ее применение при решении задач пространственной экономики. Особое внимание уделено численным методам, необходимым для исследования полученных математических моделей. Для студентов, обучающихся по направлениям "Экономика", "Прикладная математика и информатика" и другим направлениям подготовки бакалавров, а также для магистрантов, аспирантов, слушателей послевузовского образования и преподавателей. Это и многое другое вы найдете в книге Методы оптимальных решений в экономике и финансах. Напишите свою рецензию о книге «Методы оптимальных решений в экономике и финансах» https://izbe.ru/book/498080-metody-optimalnyh-resheniy-v-ekonomike-i-finansah/