Разбор паспорта научной специальности 1.1.2. Дифференциальные уравнения и математическая физика
1. Общая теория дифференциальных уравнений и систем дифференциальных уравнений. Пояснение: 1. Изучение общих свойств и поведения решений дифференциальных уравнений и их систем. 2. Разработка методов интегрирования и преобразования дифференциальных уравнений. 3. Исследование существования и единственности решений. 4. Анализ устойчивости и асимптотических свойств решений. 5. Теория обыкновенных и частных дифференциальных уравнений. 2. Начальные, краевые и смешанные задачи для дифференциальных уравнений и систем дифференциальных уравнений...
5 месяцев назад
«Факторизация и преобразования дифференциальных уравнений. Методы и приложения» Л. М. Беркович В книге представлены развитые автором методы факторизации, автономизации и точной линеаризации, которые в совокупности вместе с методами группового анализа и дифференциальной алгебры позволяют создать целостную картину для изучения и интегрирования обыкновенных дифференциальных уравнений. Это дает возможность конструктивно исследовать нелинейные и нестационарные задачи естествознания и, прежде всего, задачи механики и физики. Она может представить интерес для специалистов по дифференциальным уравнениям и математической физике, по групповому анализу, вычислительной и прикладной математике, математическому моделированию и компьютерной алгебре, теоретической и небесной механике, а также для студентов и аспирантов соответствующих специальностей. Это и многое другое вы найдете в книге Факторизация и преобразования дифференциальных уравнений. Методы и приложения (Л. М. Беркович). Напишите свою рецензию о книге Л. М. Беркович «Факторизация и преобразования дифференциальных уравнений. Методы и приложения» http://izbe.ru/book/272726-faktorizaciya-i-preobrazovaniya-differencialnyh-uravneniy-metody-i-prilozheniya-l-m-berkovich/
5380 читали · 4 года назад
Как решать дифференциальные уравнения в Matlab
Matlab позволяет решать обыкновенные дифференциальные уравнения различного порядка с начальными условиями (задачи Коши). Решатели Matlab реализуют различные методы решения систем дифференциальных уравнений (см. таблицу 1). Для решения жестких систем уравнений рекомендуется использовать только специальные решатели ode15s, ode23s, ode23t, ode23tb. Все решатели могут решать системы уравнений явного вида у' = F(t, y). Решатели ode15s и ode23t способны найти корни дифференциально-алгебраических уравнений M(t)y' = F(t, у), где М называется матрицей массы...