О метриках можно услышать не только в мире машинного обучения. Они позволяют численно или в виде графиков отобразить качество работы той или иной системы. Например, вы подняли веб-сервер, и вам скорее всего будет интересно знать, сколько запросов обрабатывает ваш сервер в течение некоторого отрезка времени, чтобы понимать далека ли нагрузка от предельной, при которой ваш сервер упадет. В машинном обучении метрики возникают в тот момент, когда вы думаете о том, как вы будете отвечать перед начальством на вопрос: “Насколько качественно работает моя новенькая модель?”...
Фундаментальная сегментация моделей машинного обучения
Все модели машинного обучения разделяются на обучение с учителем (supervised) и без учителя (unsupervised).